在直三棱柱中,分別是的中點.

(1)求證:平面;
(2)求多面體的體積.

(1)詳見解析;(2)

解析試題分析:(1)連接,根據(jù)中位線可得,再根據(jù)線面平行的判定定理證平面。(2)轉化為以為頂點,根據(jù)棱錐體積公式可直接求得。
試題解析:(1)證:連接,由分別是的中點

                             3分
平面,平面,     5分
平面                     6分
(2) 三棱柱是直三棱柱,,             8分
的中點.      9分
      10分
     12分
考點:1線面平行;2錐體的體積。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2。

(1)求證:CE∥平面PAB;
(2)求四面體PACE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知平行四邊形ABCD中,BC=2,BD⊥CD,四邊形ADEF為正方形,平面ADEF⊥平面ABCD.記CD=x,V(x)表示四棱錐F-ABCD的體積.

(1)求V(x)的表達式.
(2)求V(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在邊長為4的菱形ABCD中,∠DAB=60°,點E、F分別在邊CD、CB上,點E與點C、D不重合,EFAC,EFACO,沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.

(1)求證:BD⊥平面POA;
(2)記三棱錐P­ABD體積為V1,四棱錐P­BDEF體積為V2,且,求此時線段PO的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示是一幾何體的直觀圖、正(主)視圖、側(左)視圖、俯視圖.

(1)若FPD的中點,求證:AF⊥面PCD
(2)求幾何體BECAPD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

下圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.

(1)若的中點,求證:
(2)證明.
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形ABCD是邊長為2的正方形,直線l與平面ABCD平行,EFl上的兩個不同點,且EAED,FBFC.E′和F′是平面ABCD內的兩點,EE′和FF′都與平面ABCD垂直.

(1)證明:直線EF′垂直且平分線段AD
(2)若∠EAD=∠EAB=60 °,EF=2.求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知直三棱柱中,,,D為BC的中點.

(1)求證:∥面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知幾何體的三視圖如圖所示,其中俯視圖和側視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.

(1)求異面直線所成角的余弦值;
(2)求二面角的正弦值;
(3)求此幾何體的體積的大小

查看答案和解析>>

同步練習冊答案