若復數(shù)z滿足(z-1)i=5(i為虛數(shù)單位),則z•
z
=
 
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:利用復數(shù)的運算法則、共軛復數(shù)的定義即可得出.
解答: 解:∵復數(shù)z滿足(z-1)i=5,
∴z=1+
5
i
=1+
-5i
-i•i
=1-5i.
z•
.
z
=(1-5i)(1+5i)=26.
故答案為:26.
點評:本題考查了復數(shù)的運算法則、共軛復數(shù)的定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

曲線y2=x在點P(1,1)處切線方程
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:3x+4y-3=0,l2:3x+4y+7=0,則這兩條直線間的距離為(  )
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)是奇函數(shù),當x>0時,f(x)=x3+x+1,則f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+
1
2
n,則a32-a22=( 。
A、9
B、18
C、21
D、
11
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x),x∈R,且在x=1處,f(x)存在極小值,則( 。
A、當x∈(-∞,1)時,f′(x)>0;當x∈(1,+∞)時,f′(x)<0
B、當x∈(-∞,1)時,f′(x)>0;當x∈(1,+∞)時,f′(x)>0
C、當x∈(-∞,1)時,f′(x)<0;當x∈(1,+∞)時,f′(x)>0
D、當x∈(-∞,1)時,f′(x)<0;當x∈(1,+∞)時,f′(x)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用泰勒展開式進行證明
設函數(shù)fn(x)=-1+x+
x2
22
+
x3
32
+…+
xn
n2
(x∈R,n∈N+),證明:
(1)對每個n∈N+,存在唯一的x∈[
2
3
,1],滿足fn(xn)=0;
(2)對于任意p∈N+,由(1)中xn構成數(shù)列{xn}滿足0<xn-xn+p
1
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四面體ABCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
,M是AD的中點,P是BM的中點.
(1)若∠BDC=45°,求直線CD與平面ACB所成角的大。
(2)若二面角C-BM-D的大小為60°,求BC的長;
(3)若CD=x,對任意x∈[1.
2
],線段BD上是否存在點E,使得平面CPE⊥平面CMB?若存在,設BE=y,試寫出y關于x的函數(shù)表達式,并求出y的最大值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),e=
1
2
,其中F是橢圓的右焦點,焦距為2,直線l與橢圓C交于點A、B,點A,B的中點橫坐標為
1
4
,且
AF
FB
(其中λ>1).
(Ⅰ)求橢圓C的標準方程;  
(Ⅱ)求實數(shù)λ的值.

查看答案和解析>>

同步練習冊答案