【題目】函數(shù)f(x)=2x3﹣9x2+12x+1的單調(diào)減區(qū)間是(
A.(1,2)
B.(2,+∞)
C.(﹣∞,1)
D.(﹣∞,1)和(2,+∞)

【答案】A
【解析】解:根據(jù)題意,函數(shù)f(x)=2x3﹣9x2+12x+1,

其導(dǎo)數(shù)為:f′(x)=6x2﹣18x+12=6(x2﹣3x+2)=6(x﹣1)(x﹣2),

若f′(x)<0,則有6(x﹣1)(x﹣2)<0,

解可得:1<x<2,

則函數(shù)f(x)=2x3﹣9x2+12x+1的單調(diào)減區(qū)間是(1,2);

故選:A.

【考點精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)隨機(jī)變量X的概率分布列如表,則P(|X﹣3|=1)(

X

1

2

3

4

P

m


A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:f(x)= 在區(qū)間(1,+∞)上是減函數(shù);命題q:2x﹣1+2m>0對任意x∈R恒成立.若(¬p)∧q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,均值與方差都不變;
②設(shè)有一個回歸方程 ,變量x增加一個單位時,y平均增加3個單位;
③線性回歸方程 必經(jīng)過點 ;
④在吸煙與患肺病這兩個分類變量的計算中,從獨(dú)立性檢驗知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時,我們說現(xiàn)有100人吸煙,那么其中有99人患肺。渲绣e誤的個數(shù)是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,
(Ⅰ)當(dāng)a=2時,求f(x)在x∈[1,e2]時的最值(參考數(shù)據(jù):e2≈7.4);
(Ⅱ)若x∈(0,+∞),有f(x)+g(x)≤0恒成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為考察某種藥物預(yù)防禽流感的效果,進(jìn)行動物家禽試驗,調(diào)查了100個樣本,統(tǒng)計結(jié)果為:服用藥的共有60個樣本,服用藥但患病的仍有20個樣本,沒有服用藥且未患病的有20個樣本.
(1)根據(jù)所給樣本數(shù)據(jù)畫出2×2列聯(lián)表;
(2)請問能有多大把握認(rèn)為藥物有效?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲船以每小時30海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當(dāng)甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,此時兩船相距20海里.當(dāng)甲船航行20分鐘到達(dá)A2處時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10海里,問乙船每小時航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對兩個變量y和x進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(x1 , y1),(x2 , y2),…,(xn , yn),則下列說法中不正確的是(
A.由樣本數(shù)據(jù)得到的回歸方程 = x+ 必過樣本中心( ,
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好
D.兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對值越接近于1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:已知函數(shù)上的最小值為,若恒成立,則稱函數(shù)上具有性質(zhì).

)判斷函數(shù)上是否具有性質(zhì)?說明理由.

)若上具有性質(zhì),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案