【題目】從正方體的6個面的對角線中,任取2條組成1對,則所成角是60°的有________對.
【答案】48
【解析】
根據(jù)題意,由正方體幾何結(jié)構(gòu)分析可得:每一條對角線和另外的8條構(gòu)成8對直線所成角為60°,進而可得共有12×8對對角線所成角為60°,并且容易看出有一半是重復的,據(jù)此分析可得答案.
根據(jù)題意,如圖,在正方體中,
與平面中一條對角線成60°的直線有,,,,,,,,共8條直線,
則包含在內(nèi)的符合題意的對角線有8對;
又由正方體6個面,每個面有2條對角線,共有12條對角線,則共有12×8=96對面對角線所成角為60°,
而其中有一半是重復的;
則從正方體六個面的對角線中任取兩條作為一對,其中所成的角為60°的共有48對.
故答案為:48
科目:高中數(shù)學 來源: 題型:
【題目】已知圓與橢圓相交于點M(0,1),N(0,-1),且橢圓的離心率為.
(1)求的值和橢圓C的方程;
(2)過點M的直線交圓O和橢圓C分別于A,B兩點.
①若,求直線的方程;
②設直線NA的斜率為,直線NB的斜率為,問:是否為定值? 如果是,求出定值;如果不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線焦點為,直線過與拋物線交于兩點.到準線的距離之和最小為8.
(1)求拋物線方程;
(2)若拋物線上一點縱坐標為,直線分別交準線于.求證:以為直徑的圓過焦點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).
(1)若函數(shù)的極小值為,求的值;
(2)若,證明:當時,成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線過點,其參數(shù)方程為 (為參數(shù),),以為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)求已知曲線和曲線交于,兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)),曲線C2的參數(shù)方程為(α為參數(shù)),以坐標原點為極點.x軸正半軸為極軸建立極坐標系.
(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標方程;
(Ⅱ)射線與曲線C2交于O,P兩點,射線與曲線C1交于點Q,若△OPQ的面積為1,求|OP|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點F是拋物線的焦點,若點在拋物線C上,且
(1)求拋物線C的方程;
(2)動直線與拋物線C相交于兩點,問:在x軸上是否存在定點(其中),使得x軸平分?若存在,求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com