A. | 1 | B. | 2 | C. | 4 | D. | 不能確定 |
分析 過點C作CD⊥AB于D,可得AD=$\frac{1}{2}$AB=1,在Rt△ACD中,利用三角函數(shù)的定義算出cosA=$\frac{1}{|AC|}$,再由向量數(shù)量積的公式加以計算,可得$\overrightarrow{AB}$•$\overrightarrow{AC}$的值.
解答 解:過點C作CD⊥AB于D,則D為AB的中點.
在Rt△ACD中,AD=$\frac{1}{2}$AB=1,
可得cosA=$\frac{AD}{AC}=\frac{1}{|\overrightarrow{AC}|}$,
∴$\overrightarrow{AB}•\overrightarrow{AC}$=$|\overrightarrow{AB}||\overrightarrow{AC}|$cosA=$|\overrightarrow{AB}|•|\overrightarrow{AC}|•\frac{1}{|\overrightarrow{AC}|}$=$|\overrightarrow{AB}|=2$,
故選:B.
點評 本題已知圓的弦長,求向量的數(shù)量積.著重考查了圓的性質(zhì)、直角三角形中三角函數(shù)的定義與向量的數(shù)量積公式等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10,15,25 | B. | 10,16,24 | C. | 11,15,24 | D. | 12,13,25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | $\sqrt{5}$ | D. | 3$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {0,1,2} | C. | (1,2) | D. | (-1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{7}}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{-1+5i}{5}$ | B. | $\frac{-1+7i}{5}$ | C. | 1+i | D. | $\frac{-1+5i}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com