12.如圖,在圓C中,點A,B在圓上,已知|AB|=2,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的值( 。
A.1B.2C.4D.不能確定

分析 過點C作CD⊥AB于D,可得AD=$\frac{1}{2}$AB=1,在Rt△ACD中,利用三角函數(shù)的定義算出cosA=$\frac{1}{|AC|}$,再由向量數(shù)量積的公式加以計算,可得$\overrightarrow{AB}$•$\overrightarrow{AC}$的值.

解答 解:過點C作CD⊥AB于D,則D為AB的中點.
在Rt△ACD中,AD=$\frac{1}{2}$AB=1,
可得cosA=$\frac{AD}{AC}=\frac{1}{|\overrightarrow{AC}|}$,
∴$\overrightarrow{AB}•\overrightarrow{AC}$=$|\overrightarrow{AB}||\overrightarrow{AC}|$cosA=$|\overrightarrow{AB}|•|\overrightarrow{AC}|•\frac{1}{|\overrightarrow{AC}|}$=$|\overrightarrow{AB}|=2$,
故選:B.

點評 本題已知圓的弦長,求向量的數(shù)量積.著重考查了圓的性質(zhì)、直角三角形中三角函數(shù)的定義與向量的數(shù)量積公式等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將500個實驗樣本編號為001,002,003,…,500.采用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,且隨機抽得的一個號碼為005,這500個實驗樣本分別在三個本庫,從001到100在甲樣本庫,從101到250放在乙樣本庫,從251到500放在丙樣本庫,則甲、乙、丙三個樣本庫被抽中的樣本個數(shù)分別為( 。
A.10,15,25B.10,16,24C.11,15,24D.12,13,25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.10101(2)轉(zhuǎn)化為十進制數(shù)是21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(x,3),且$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow$|=( 。
A.3B.5C.$\sqrt{5}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.集合A={x|x2-3x+2=0},B={0,1},則A∪B=( 。
A.{1}B.{0,1,2}C.(1,2)D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面直角坐標(biāo)系xOy中,已知任意角θ以x軸非負(fù)半軸為始邊,若終邊經(jīng)過點P(x0,y0),且|OP|=r(r>0),定義sicosθ=$\frac{{x}_{0}+{y}_{0}}{r}$,稱“sicosθ”為“正余弦函數(shù)”.對于正余弦函數(shù)y=sicosx,有同學(xué)得到如下結(jié)論:
①該函數(shù)是偶函數(shù);
②該函數(shù)的一個對稱中心是($\frac{3π}{4}$,0);
③該函數(shù)的單調(diào)遞減區(qū)間是[2kπ-$\frac{3π}{4}$,2kπ+$\frac{π}{4}$],k∈Z.
④該函數(shù)的圖象與直線y=$\frac{3}{2}$沒有公共點;
以上結(jié)論中,所有正確的序號是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的兩條漸近線與拋物線y2=-16x的準(zhǔn)線交于A,B,且|AB|=6,則雙曲線的離心率為(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.i是虛數(shù)單位,若z(2+i)=1+3i,則復(fù)數(shù)z=( 。
A.$\frac{-1+5i}{5}$B.$\frac{-1+7i}{5}$C.1+iD.$\frac{-1+5i}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若x,y滿足約束條件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ 2x-y-2≥0\end{array}\right.$,則z=x+2y的最小值為2.

查看答案和解析>>

同步練習(xí)冊答案