13.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=6,當(dāng)①$\overrightarrow{a}$∥$\overrightarrow$,②$\overrightarrow{a}$⊥$\overrightarrow$,③$\overrightarrow{a}$與$\overrightarrow$的夾角是60°時,分別求$\overrightarrow{a}$•$\overrightarrow$.

分析 求出平面向量的夾角,利用數(shù)量積的定義計算.

解答 解:①當(dāng)$\overrightarrow{a}∥\overrightarrow$時,$\overrightarrow{a}$與$\overrightarrow$方向相同或相反,∴$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$||$\overrightarrow$|cos0°=18或$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$||$\overrightarrow$|cos180°=-18.
②當(dāng)$\overrightarrow{a}⊥\overrightarrow$時,$\overrightarrow{a},\overrightarrow$的夾角為90°,∴$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$||$\overrightarrow$|cos90°=0.
③當(dāng)$\overrightarrow{a}$與$\overrightarrow$的夾角是60°時,$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$||$\overrightarrow$|cos60°=3×$6×\frac{1}{2}$=9.

點評 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在正六邊形ABCDEF中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AF}$=$\overrightarrow$,求$\overrightarrow{AC}$,$\overrightarrow{AD}$,$\overrightarrow{AE}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.銳角三角形ABC中,角A,B,C所對的邊分別為a,b,c,且c-a(cosB+$\frac{\sqrt{3}}{3}$sinB)=0.
(1)求角A的大。
(2)若a=$\sqrt{3}$,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若${C}_{n}^{0}$+$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{3}$${C}_{n}^{2}$+…+$\frac{1}{n+1}$${C}_{n}^{n}$=$\frac{31}{n+1}$,求(1-2x)2n的展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an},其通項公式an=nsin2$\frac{n}{2}$π-ncos2$\frac{n}{2}$π,其前n項和為Sn,求S2014+S2015的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知等差數(shù)列{an}的前n項和為Sn,且$\frac{{S}_{25}}{{a}_{23}}$=5,$\frac{{S}_{45}}{{a}_{33}}=25$,則$\frac{{S}_{65}}{{a}_{43}}$等于( 。
A.125B.85C.45D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.我縣某種蔬菜從二月一日起開始上市,通過市場調(diào)查,得到西紅柿種植成本Q(單位:元/102kg)與上市時間t(單位:天)的數(shù)據(jù)如下表:
時間t50110250
種植成本Q150108150
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個函數(shù)描述西紅柿種植成本Q與上市時間t的變化關(guān)系.Q=at+b,Q=at2+bt+c,Q=a•bt,Q=a•logbt.
(2)利用你選取的函數(shù),求西紅柿種植成本最低時的上市天數(shù)及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)$f(x)={log_2}({2x-{x^2}})$單調(diào)減區(qū)間為[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.半徑為2,圓心角等于$\frac{2π}{5}$的扇形的面積是$\frac{4π}{5}$.

查看答案和解析>>

同步練習(xí)冊答案