【題目】已知函數(shù)f(x)=(a+1)lnx+ x2(a<﹣1)對(duì)任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,則a的取值范圍為

【答案】(﹣∞,﹣2]
【解析】解:由f′(x)= + x,
得f′(1)=3a+1,
所以f(x)=(a+1)lnx+ax2 , (a<﹣1)在(0,+∞)單調(diào)遞減,不妨設(shè)0<x1<x2
則f(x1)﹣f(x2)≥4x2﹣4x1 , 即f(x1)+4x1≥f(x2)+4x2
令F(x)=f(x)+4x,F(xiàn)′(x)=f′(x)+4= +2ax+4,
等價(jià)于F(x)在(0,+∞)上單調(diào)遞減,
故F'(x)≤0恒成立,即 +2ax+4≤0,
所以 恒成立,
得a≤﹣2.
所以答案是:(﹣∞,﹣2].
【考點(diǎn)精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在(0,+∞)上的函數(shù)fx)滿足f(2x)=x2-2x

(Ⅰ)求函數(shù)y=fx)的解析式;

(Ⅱ)若關(guān)于x的方程fx)=在(1,4)上有實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)M(1,f(1))處的切線方程為

求(1)實(shí)數(shù)a,b的值;

2)函數(shù)的單調(diào)區(qū)間及在區(qū)間[0,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題 ,命題 .

1)若,求實(shí)數(shù)的值;

2)若的充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家通過(guò)研究學(xué)生的學(xué)習(xí)行為發(fā)現(xiàn);學(xué)生的接受能力與老師引入概念和描述問(wèn)題所用的時(shí)間相關(guān),教學(xué)開(kāi)始時(shí),學(xué)生的興趣激增,學(xué)生的興趣保持一段較理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散,分析結(jié)果和實(shí)驗(yàn)表明,用表示學(xué)生掌握和接受概念的能力, x表示講授概念的時(shí)間(單位:min),可有以下的關(guān)系:

(1)開(kāi)講后第5min與開(kāi)講后第20min比較,學(xué)生的接受能力何時(shí)更強(qiáng)一些?

(2)開(kāi)講后多少min學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?

(3)若一個(gè)新數(shù)學(xué)概念需要55以上(包括55)的接受能力以及13min時(shí)間,那么老師能否在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)概念?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)點(diǎn),和直線相切,且圓心在直線上.

(1)求圓的方程;

(2)已知直線經(jīng)過(guò)原點(diǎn),并且被圓截得的弦長(zhǎng)為2,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, .

(1)若函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的圖象在點(diǎn)處的切線方程;

2若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

Ⅰ)判斷函數(shù)的奇偶性并求函數(shù)的零點(diǎn);

Ⅱ)寫(xiě)出的單調(diào)區(qū)間;(只需寫(xiě)出結(jié)果)

Ⅲ)試討論方程的根的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2cosθ,θ∈[0, ]
(1)求C的參數(shù)方程;
(2)設(shè)點(diǎn)D在半圓C上,半圓C在D處的切線與直線l:y= x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,求直線CD的傾斜角及D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案