11.已知三棱錐P-ABC,在底面△ABC中,∠A=60°,BC=$\sqrt{3}$,PA⊥面ABC,PA=2$\sqrt{3}$,則此三棱錐的外接球的表面積為(  )
A.$\frac{16}{3}$πB.4$\sqrt{3}$πC.$\frac{32}{3}$πD.16π

分析 根據(jù)正弦定理得出截面圓的半徑為1,利用球的幾何性質(zhì)把空間轉(zhuǎn)化為平面為梯形PANO,利用平圖形的幾何性質(zhì)求解.

解答 解:根據(jù)題意得出圖形如下;O為球心,N為底面△ABC截面圓的圓心,ON⊥面ABC
∵,在底面△ABC中,∠A=60°,BC=$\sqrt{3}$,
∴根據(jù)正弦定理得出:$\frac{\sqrt{3}}{sin60°}$=2r,
即r=1,
∵PA⊥面ABC,
∴PA∥ON,
∵PA=2$\sqrt{3}$,AN=1,ON=d,
∴OA=OP=R,
∴根據(jù)等腰三角形得出:PAO中PA=2d=2$\sqrt{3}$,d=$\sqrt{3}$
∵R2=12+($\sqrt{3}$)=4,
∴三棱錐的外接球的表面積為4πR2=16π
故選:D

點(diǎn)評(píng) 本題綜合考查了空間幾何的性質(zhì),球的幾何意義,學(xué)生的空間想象能力,解決三角形的問題,屬于綜合性較強(qiáng)的題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知ω>0,在函數(shù)y=sinωx與y=cosωx的圖象的交點(diǎn)中,相鄰的三個(gè)交點(diǎn)恰好為一個(gè)等邊三角形的三個(gè)頂點(diǎn),則ω=$\frac{\sqrt{6}}{2}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知a•a=4,求|a|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.有編號(hào)為1,2,3,4,5的五個(gè)小球和編號(hào)為1,2,3,4的四個(gè)盒子,現(xiàn)把球全部放入盒子中,
(1)若恰有一個(gè)盒子不放球,有多少種放法?
(2)若每個(gè)盒子都不空,恰有兩個(gè)小球放入編號(hào)相同的盒子,有多少種放法?
(3)若每個(gè)盒子都不空,且編號(hào)為偶數(shù)的小球只放入編號(hào)為偶數(shù)的盒子中,有多少種放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}中各項(xiàng)均為正數(shù),b1=1,且b2+S2=12,數(shù)列{bn}的公比$q=\frac{S_2}{b_2}$.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求數(shù)列{(-1)nan•bn}的前2n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在數(shù)列{an}中,a1=$\frac{1}{3}$,$\frac{1}{{a}_{n+1}}$=$\frac{3}{{a}_{n}({a}_{n}+3)}$,n∈N+,且bn=$\frac{1}{3+{a}_{n}}$,記Pn=b1•b2•b3…bn,Sn=b1+b2+b3+…+bn,則3n+1Pn+Sn=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知sinα=$\frac{1}{2}$+cosα,且α∈(0,$\frac{π}{2}$),則$\frac{cos2α}{{sin(α+\frac{π}{4})}}$的值為$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}中,a1=2,a2=3,其前n項(xiàng)和Sn滿足Sn+1+Sn-1=2Sn+1,其中n≥2,n∈N*
(Ⅰ)求證:數(shù)列{an}為等差數(shù)列,并求其通項(xiàng)公式;
(Ⅱ)設(shè)bn=an•2-n,Tn為數(shù)列{bn}的前n項(xiàng)和.
①求Tn的表達(dá)式;
②求使Tn>2的n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=2x-2x的零點(diǎn)個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案