16.在數(shù)列{an}中,a1=$\frac{1}{3}$,$\frac{1}{{a}_{n+1}}$=$\frac{3}{{a}_{n}({a}_{n}+3)}$,n∈N+,且bn=$\frac{1}{3+{a}_{n}}$,記Pn=b1•b2•b3…bn,Sn=b1+b2+b3+…+bn,則3n+1Pn+Sn=3.

分析 由已知數(shù)列遞推式可得$_{n}=\frac{{a}_{n}}{3{a}_{n+1}}$,$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n}+3}=\frac{1}{{a}_{n}}-_{n}$,然后求出Pn與Sn,代入3n+1Pn+Sn得答案.

解答 解:∵$\frac{1}{{a}_{n+1}}$=$\frac{3}{{a}_{n}({a}_{n}+3)}$,bn=$\frac{1}{3+{a}_{n}}$,
∴$_{n}=\frac{{a}_{n}}{3{a}_{n+1}}$,$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n}+3}=\frac{1}{{a}_{n}}-_{n}$,
∴Pn=b1•b2•b3…bn =$\frac{{a}_{1}}{3{a}_{2}}•\frac{{a}_{2}}{3{a}_{3}}…\frac{{a}_{n}}{3{a}_{n+1}}=\frac{1}{{3}^{n+1}•{a}_{n+1}}$,
Sn=b1+b2+b3+…+bn=$\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}+\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}}+…+\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}=3-$$\frac{1}{{a}_{n+1}}$,
則3n+1Pn+Sn=$\frac{1}{{a}_{n+1}}+3-\frac{1}{{a}_{n+1}}=3$.
故答案為:3.

點(diǎn)評(píng) 本題考查數(shù)列求和,考查學(xué)生的邏輯思維能力和運(yùn)算能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某游戲規(guī)則如下:隨機(jī)地往半徑為4的圓內(nèi)投擲飛標(biāo),若飛鏢到圓心的距離大于2,則成績?yōu)榧案瘢蝗麸w鏢到圓心的距離小于1,則成績?yōu)閮?yōu)秀;若飛鏢到圓心的距離大于或等于1且小于或等于2,則成績?yōu)榱己,那么在所有投擲到圓內(nèi)的飛鏢中得到成績?yōu)榱己玫母怕蕿椋ā 。?table class="qanwser">A.$\frac{1}{16}$B.$\frac{3}{16}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在等腰三角形中,已知頂角θ的正弦值為$\frac{3}{5}$,試求該三角形底角的正弦、余弦和正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an•log2an,其前n項(xiàng)和為Sn,若(n-1)2≤m(Sn-n-1)對(duì)于n≥2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知三棱錐P-ABC,在底面△ABC中,∠A=60°,BC=$\sqrt{3}$,PA⊥面ABC,PA=2$\sqrt{3}$,則此三棱錐的外接球的表面積為( 。
A.$\frac{16}{3}$πB.4$\sqrt{3}$πC.$\frac{32}{3}$πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)數(shù)列{an}的各項(xiàng)均為正整數(shù),其前n項(xiàng)和為Sn,我們稱滿足條件“對(duì)任意的m,n∈N*,均有(n-m)Sn+m=(n+m)(Sn-Sm)”的數(shù)列{an}為“L數(shù)列”.現(xiàn)已知數(shù)列{an}為“L數(shù)列”,且a2016=3000,則an=984+n或3000.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.[B]已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足2Sn=4an+(n-4)(n+1)(n∈N+).
(1)計(jì)算a1,a2,a3,根據(jù)計(jì)算結(jié)果,猜想an的表達(dá)式;
(2)設(shè)數(shù)列{bn}滿足(an-n)•bn=2n-1(n∈N+),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.閱讀下面的一段文字,并解決后面的問題:
我們可以從函數(shù)的角度來研究方程的解的個(gè)數(shù)的情況,例如,研究方程2x3-3x2-6=0的解的情況:因?yàn)榉匠?x3-3x2-6=0的同解方程有x3=$\frac{3}{2}{x^2}$+3,2x-3=$\frac{6}{x^2}$等多種形式,所以,我們既可以選用函數(shù)y=x3,y=$\frac{3}{2}{x^2}$+3,也可以選用函數(shù)y=2x-3,y=$\frac{6}{x^2}$,通過研究兩函數(shù)圖象的位置關(guān)系來研究方程的解的個(gè)數(shù)情況.因?yàn)楹瘮?shù)的選擇,往往決定了后續(xù)研究過程的難易程度,所以從函數(shù)的角度來研究方程的解的情況,首先要注意函數(shù)的選擇.
請(qǐng)選擇合適的函數(shù)來研究該方程$\frac{1}{x}$=$\frac{ax+b}{e^x}$的解的個(gè)數(shù)的情況,記k為該方程的解的個(gè)數(shù).請(qǐng)寫出k的所有可能取值,并對(duì)k的每一個(gè)取值,分別指出你所選用的函數(shù),畫出相應(yīng)圖象(不需求出a,b的數(shù)值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{xlnx}{x-1}$.
(1)求曲線f(x)在點(diǎn)(e,f(e))(e為自然對(duì)數(shù)的底數(shù))處的切線方程;
(2)求證:$\frac{\root{2016}{2015}}{\root{2015}{2016}}$>$\frac{2015}{2016}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案