10.設(shè)F為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),若OF的垂直平分線與漸近線在第一象限內(nèi)的交點(diǎn)到另一條漸近線的距離為$\frac{2}{3}$|OF|,則雙曲線的離心率為(  )
A.$2\sqrt{3}$B.$\frac{{3\sqrt{5}}}{5}$C.$2\sqrt{5}$D.5

分析 求得交點(diǎn)坐標(biāo),利用點(diǎn)到直線的距離公式,即可求得a,c的關(guān)系式,即可求得雙曲線的離心率.

解答 解:雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)漸近線方程y=±$\frac{a}$x,
由OF的垂直平分線為x=$\frac{c}{2}$,將x=$\frac{c}{2}$,代入y=$\frac{a}$x,則y=$\frac{bc}{2a}$,
則交點(diǎn)坐標(biāo)為M($\frac{c}{2}$,$\frac{bc}{2a}$),
由M,到y(tǒng)=-$\frac{a}$x,即bx+ay=0的距離d=$\frac{|\frac{bc}{2}+\frac{bc}{2}|}{\sqrt{{a}^{2}+^{2}}}$=$\frac{2}{3}$|OF|=$\frac{2c}{3}$,
解得:2c=3b=3$\sqrt{{c}^{2}-{a}^{2}}$,即9a2=5c2,
則雙曲線的離心率e=$\frac{c}{a}$=$\frac{3\sqrt{5}}{5}$,
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),考查點(diǎn)到直線的距離公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{y≥0}\\{x-2y≥2}\\{x+y≤5}\end{array}\right.$,則x+2y的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.“平面α內(nèi)的兩條直線與平面β都平行”是“平面α與平面β平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=xex-lnx.
(1)當(dāng)x≥1時(shí),判斷函數(shù)f(x)的單調(diào)性;
(2)若方程2af(x)-2axex+x2-2ax=0有唯一實(shí)數(shù)解,求正數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的各項(xiàng)都是正數(shù),它的前n項(xiàng)和為Sn,滿足2Sn=an2+an,記bn=(-1)n$\frac{{2{a_n}+1}}{{{a_n}^2+{a_n}}}$.
(1)求數(shù)列{an}的通項(xiàng)公式; 
(2)求數(shù)列{bn}的前2016項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求下列直線或圓的方程
(1)過點(diǎn)(2,1)且與直線x+3y+4=0垂直的直線方程;
(2)以線段AB:x+y-2=0(0≤x≤2)為直徑的圓的標(biāo)準(zhǔn)方程;
(3)圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關(guān)于直線x-y-1=0對(duì)稱,則圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)$f(x)=\left\{\begin{array}{l}{2^x},x≤0\;,\;\\{log_2}x,x>0\end{array}\right.$則f(f(-1))=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.tan27°+tan33°+$\sqrt{3}$tan27°tan33°=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=x-\frac{1}{x^m}$,且$f(2)=\frac{3}{2}$.
(1)求f(x)的解析式;
(2)證明函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù);
(3)當(dāng)x∈[-5,-3]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案