2.已知AB、CD為梯形ABCD的底,對(duì)角線AC、BD的交點(diǎn)為O,且AB=8,CD=6,BD=15,求OB、OD的長(zhǎng).

分析 利用平行線分線段成比例,得出比例式,即可得出結(jié)論.

解答 解:如圖所示,∵DC∥AB,
∴$\frac{DO}{OB}=\frac{DC}{AB}$=$\frac{6}{8}$=$\frac{3}{4}$,
∵BD=15,
∴DO=$\frac{45}{7}$,BO=$\frac{60}{7}$.

點(diǎn)評(píng) 本題考查平行線分線段成比例,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}({a+2}){x^2}+x({a∈R})$
(1)當(dāng)a=0時(shí),記f(x)圖象上動(dòng)點(diǎn)P處的切線斜率為k,求k的最小值;
(2)設(shè)函數(shù)$g(x)=e-\frac{e^x}{x}$(e為自然對(duì)數(shù)的底數(shù)),若對(duì)?x>0,f′(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=lnx+$\frac{1}{x}$-3的極小值點(diǎn)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知?jiǎng)狱c(diǎn)P到直線l:x=-1的距離等于它到圓C:x2+y2-4x+1=0的切線長(zhǎng)(P到切點(diǎn)的距離),記動(dòng)點(diǎn)P的軌跡為曲線E
(Ⅰ)求曲線E的方程;
(Ⅱ)點(diǎn)Q是直線l上的動(dòng)點(diǎn),過圓心C作QC的垂線交曲線E于A,B兩點(diǎn),設(shè)AB的中點(diǎn)為D,求$\frac{|QD|}{|AB|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知曲線Γ上的點(diǎn)P到點(diǎn)F(0,1)的距離比它到x軸的距離多1.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)記曲線Γ在x軸上方的部分為曲線C,過點(diǎn)M(0,2)任作一直線與曲線C相交于A、B兩點(diǎn),過點(diǎn)B作y軸的平行線與直線AO相交于點(diǎn)D(O為坐標(biāo)原點(diǎn)),求點(diǎn)D的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=ex+ln(x+1)-ax.
(Ⅰ)當(dāng)a=2時(shí),證明:函數(shù)f(x)在定義域內(nèi)單調(diào)遞增;
(Ⅱ)當(dāng)x≥0時(shí),f(x)≥cosx恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)n∈N*,函數(shù)f(x)=$\frac{lnx}{{x}^{n}}$,函數(shù)g(x)=$\frac{{e}^{x}}{{x}^{n}}$(x>0).
(1)當(dāng)n=1時(shí),求函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù);
(2)若函數(shù)y=f(x)與函數(shù)y=g(x)的圖象分別位于直線y=1的兩側(cè),求n的取值集合A;
(3)對(duì)于?∈A,?x1,x2∈(0,+∞),求|f(x1)-g(x2)|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.判定直線4x+3y+13=0與圓x2+y2+6x-6y+14=0的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x>-1,則函數(shù)y=$\frac{(x+10)(x+2)}{x+1}$的最小值為16.

查看答案和解析>>

同步練習(xí)冊(cè)答案