3.已知(2x+1)9=a0+a1x+a2x2+…+a9x9,其中a0,a1,a2,…,a9為常數(shù),x∈R,則a0+a1+a2+…+a9=19683;(a1+3a3+5a5+…)2-(2a2+4a4+6a6+…)2=2125764.

分析 令x=1,則a0+a1+a2+…+a9=39;先求導(dǎo)數(shù),再令x=±1,利用平方差公式可得結(jié)論.

解答 解:令x=1,則a0+a1+a2+…+a9=39=19683;
∵(2x+1)9=a0+a1x2+a2x+…+a9x9,
兩邊同時(shí)取導(dǎo)數(shù)可得18(2x+1)8=a1+2a2•x+3a3•x2+4a4•x3+…+9a9x8
令x=1 可得 a1+2a2+3a3+4a4+…+9a9=18•38=118098
令x=-1可得 a1-2a2+3a3-4a4+…+9a9=18.
故所求的式子等于 (a1-2a2+3a3-4a4+…+9a9 )(a1+2a2+3a3+4a4+…+9a9
=118098×18=2125764,
故答案為:19683;2125764.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過給二項(xiàng)式的x賦值,可以簡便的求出答案,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率e=$\frac{\sqrt{5}}{2}$,點(diǎn)P是拋物線x2=4y上的一動(dòng)點(diǎn),P到雙曲線C的右焦點(diǎn)F1(c,0)的距離與到直線y=-1的距離之和的最小值為$\sqrt{6}$,則該雙曲線的方程為( 。
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.x2-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an}滿足a1=5,a3=1,前n項(xiàng)和為Sn,則下列說法正確的是( 。
A.{an}的前n項(xiàng)和中S3最大B.{an}是遞增數(shù)列
C.{an}中存在值為0的項(xiàng)D.S4<S5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.觀察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,則第n個(gè)式子是( 。
A.n+(n+1)+(n+2)+…+(2n-1)=n2B.n+(n+1)+(n+2)+…+(2n-1)=(2n-1)2
C.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在等比數(shù)列{an}中,a1+a3=10,a4+a6=$\frac{5}{4}$.Sn是數(shù)列{an}的前n項(xiàng)的和,求a5和S6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸且兩坐標(biāo)系中具有相同的長度單位,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2-2$\sqrt{3}$ρsinθ=a(a>-3)
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若曲線C與直線l有唯一公共點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.點(diǎn)S,A,B,C在半徑為$\sqrt{2}$的同一球面上,△ABC是邊長為$\sqrt{3}$的正三角形,若點(diǎn)S到平面ABC的距離為$\frac{1}{2}$,則點(diǎn)S與△ABC中心的距離為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{{\sqrt{5}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,△ABC的邊AB、BC與⊙O交于A、D、E、C四點(diǎn),且AC=BE,∠ADC=∠BDE.
(Ⅰ)求證:CD平分∠ACB;
(Ⅱ)若2BE=3DE=3,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)x,y均為正實(shí)數(shù),則當(dāng)($\frac{1}{x}$+$\frac{1}{y}$)(4x+y)取得最小值時(shí),$\frac{y}{x}$=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

同步練習(xí)冊答案