20.直線2x+ay+2=0與直線ax+(a+4)y-1=0平行,則a的值為4或-2.

分析 利用兩條直線平行,斜率相等,建立等式即可求a的值

解答 解:a=0時(shí),2x+2=0和4y-1=0不平行,
a=-4時(shí),2x-4y+2=0和-4x-1=0不平行,
故兩直線的斜率均存在,
∴$\frac{2}{a}$=$\frac{a}{a+4}$≠$\frac{2}{-1}$,解得:a=4或-2,
故答案為:4或-2.

點(diǎn)評(píng) 本題考查兩條直線平行的判定,是基礎(chǔ)題.本題先用斜率相等求出參數(shù)的值,再代入驗(yàn)證,是解題的常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AD∥BC,∠BAD=90°,BC=1,AD=PA=$\sqrt{2}$AB=2,E,F(xiàn)分別為PB,AD的中點(diǎn).
(1)證明:AC⊥EF;
(2)求直線EF與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知實(shí)數(shù)a,b滿足:2b2-a2=2,則|a-3b|的最小值為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=asinxcosx+\sqrt{3}a{cos^2}x$,(a為常數(shù)且a>0).
(1)若函數(shù)的定義域?yàn)?[{0,\frac{π}{2}}]$,值域?yàn)?[{0,({\frac{{\sqrt{3}}}{2}+1})}]$,求a的值;
(2)在(1)的條件下,定義區(qū)間(m,n),[m,n],(m,n],[m,n)的長度為n-m,其中n>m,若不等式f(x)+b>0,x∈[0,π]的解集構(gòu)成的各區(qū)間的長度和超過$\frac{π}{3}$,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“m=2”是“l(fā)oga2+log2a≥m(a>1)恒成立”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義在R上的偶函數(shù)f(x)滿足f(x)>0,且對(duì)任意x∈R,f(x+2)=$\frac{1}{f(x)}$恒成立,則f(2015)=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{a}x,x>1}\\{(8-a)x-4,x≤1}\end{array}\right.$是R上的增函數(shù),則實(shí)數(shù)a的取值范圍為(  )
A.(1,+∞)B.(1,8)C.(4,8)D.[4,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.不等式組$\left\{\begin{array}{l}2x>4\\ 2{x^2}-3x-2>0\\ 3x+a>0\end{array}\right.$的解集是{x|x>2},則實(shí)數(shù)a的取值范圍是( 。
A.a≤-6B.a≥-6C.a≤6D.a≥6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,an+1=3Sn(n∈N*),則S6=(  )
A.44B.45C.$\frac{1}{3}•$(46-1)D.$\frac{1}{3}•$(45-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案