分析 (1)利用遞推關(guān)系與等比數(shù)列的通項(xiàng)公式即可得出;
(2)利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(1)∵an+1=1-3Sn.
∴當(dāng)n≥2時(shí),an=1-3Sn-1,
可得an+1-an=-3an,化為an+1=-2an.
∴數(shù)列{an}是等比數(shù)列,公比為-2,首項(xiàng)為1.
∴an=(-2)n-1.
(2)∵anbn=n,∴bn=$\frac{n}{(-2)^{n-1}}$.
∴{bn}的前n項(xiàng)和Tn=1+$\frac{2}{-2}$+$\frac{3}{(-2)^{2}}$+…+$\frac{n}{(-2)^{n-1}}$,
$-\frac{1}{2}{T}_{n}$=$\frac{1}{-2}+\frac{2}{(-2)^{2}}+\frac{3}{(-2)^{3}}$+…+$\frac{n-1}{(-2)^{n-1}}$+$\frac{n}{(-2)^{n}}$,
∴$\frac{3}{2}{T}_{n}$=$1+\frac{1}{-2}+\frac{1}{(-2)^{2}}$+…+$\frac{1}{(-2)^{n-1}}$-$\frac{n}{(-2)^{n}}$=$\frac{1-(-\frac{1}{2})^{n}}{1-\frac{1}{-2}}$-$\frac{n}{(-2)^{n}}$=$\frac{2}{3}$-$\frac{2+3n}{3×(-2)^{n}}$
∴Tn=$\frac{4}{9}$-$\frac{4+6n}{9×(-2)^{n}}$.
點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、遞推關(guān)系的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{π}{12}$,$\frac{π}{2}$] | B. | [$\frac{π}{6}$,$\frac{π}{3}$] | C. | [$\frac{π}{12}$,$\frac{π}{3}$] | D. | ($\frac{π}{6}$,$\frac{π}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第6項(xiàng) | B. | 第7項(xiàng) | C. | 第8項(xiàng) | D. | 第9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com