長方體ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5,P是棱BC上一動點,則AP+PC1的最小值為 ________.


分析:長方體ABCD-A1B1C1D1中,P是棱BC上一動點,求AP+PC1的最小值可將以BC為相交棱的兩個側面展開成一個平面,從平面上可以看出當三點A、P、C1在一條直線上時,AP+PC1的值最小,此時線段恰好是直角三角形的斜邊.由勾股定理求值即可.
解答:可將長方體的側面沿棱B1C1展開成一個平面,則AP+PC1的最小值即為線段AC1的值,
又 AB=3,BC=4,AA1=5,故直角三角形AB1C1中兩條直角邊的長度分別為B1C1=4,AB1=8,
由公股定理得AC1===
即AP+PC1的最小值為,
故答案為
點評:本題考點是點、線、面間的距離計算,考查對長方體結構特征的了解,本題把求拆線長度的問題轉變?yōu)榍髢牲c間距離的問題,將一個立體幾何中求長度的問題轉化為平面中兩點線段的長度體現(xiàn)了數(shù)學中化歸的思想,立體幾何中的問題有不少都是借助化歸思想將空間中的問題轉化到平面中解決,大大降低了解題的難度.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在長方體ABCD-A1B1C1D1中,AB=BC=2,過A1、C1、B三點的平面截去長方體的一個角后,得到如圖所示的幾何體ABCD-A1C1D1,且這個幾何體的體積為10.
(1)求棱A1A的長;
(2)求點D到平面A1BC1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,長方體ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中點,N是B1C1中點.
(1)求證:A1、M、C、N四點共面;
(2)求證:BD1⊥MCNA1;
(3)求證:平面A1MNC⊥平面A1BD1;
(4)求A1B與平面A1MCN所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

長方體ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5 則三棱錐A1-ABC的體積為( 。
A、10B、20C、30D、35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知多面體ABCD-A1B1C1D1,它是由一個長方體ABCD-A'B'C'D'切割而成,這個長方體的高為b,底面是邊長為a的正方形,其中頂點A1,B1,C1,D1均為原長方體上底面A'B'C'D'各邊的中點.
(1)若多面體面對角線AC,BD交于點O,E為線段AA1的中點,求證:OE∥平面A1C1C;
(2)若a=4,b=2,求該多面體的體積;
(3)當a,b滿足什么條件時AD1⊥DB1,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側棱BB1的中點.
(1)求證:A1E⊥平面ADE;
(2)求三棱錐A1-ADE的體積.

查看答案和解析>>

同步練習冊答案