13.如圖,四棱錐P-ABCD中,PB⊥底面ABCD,底面ABCD為直角梯形,∠ABC=90°,AD∥BC,∠BCD=45°,AB=AD=PB=1,點(diǎn)E在棱PA上,且PE=2EA.
(1)求證:平面PCD⊥平面PBD;
(2)求二面角A-BE-D的正弦值的大小.

分析 (1)欲證CD⊥平面PAC,根據(jù)直線與平面垂直的判定定理可知只需證CD與平面PAC內(nèi)兩相交直線垂直,根據(jù)PB⊥底面ABCD,則PB⊥CD,利用勾股定理可知BD⊥CD,PB∩BC=B,滿足定理?xiàng)l件;
(2)先求平面EBD的法向量與平面ABE的法向量,然后利用向量的夾角公式求出此角的余弦值即二面角A-BE-D的大小的余弦值.

解答 證明:(1)∵PB⊥底面ABCD.底面ABCD為直角梯形,∠ABC=90°,∴AB⊥BC.
PB⊥底面ABCD.
而CD?底面ABCD,∴PB⊥CD.
在底面ABCD中,∵∠ABC=∠BAD=90°,AB=AD=$\frac{1}{2}$BC,
∴BD=CD=$\frac{\sqrt{2}}{2}$BC,∴BD⊥CD.
又∵PB∩BD=B,∴CD⊥平面PAC.
∵CD?平面PCD,∴平面PCD⊥平面PBD.
解:(2)設(shè)平面EBD的法向量為$\overrightarrow{n}$=(x,y,z),B(0,0,0),E(0,$\frac{2}{3}$,$\frac{1}{3}$),D(1,1,0),
$\overrightarrow{BE}$=(0,$\frac{2}{3}$,$\frac{1}{3}$),$\overrightarrow{BD}$=(1,1,0),
則$\left\{\begin{array}{l}{\overrightarrow{BD}•\overrightarrow{n}=x+y=0}\\{\overrightarrow{BE}•\overrightarrow{n}=\frac{2}{3}y+\frac{1}{3}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=($\frac{1}{2},-\frac{1}{2},1$),
又∵平面ABE的法向量為$\overrightarrow{m}$=(0,1,0),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{6}}{6}$.
即二面角A-BE-D的大小的余弦值為$\frac{\sqrt{6}}{6}$.

點(diǎn)評(píng) 本題主要考查直線與平面的位置關(guān)系、兩異面直線所成角、二面角及其平面角等有關(guān)知識(shí),考查空間想象能力和思維能力,應(yīng)用向量知識(shí)解決立體幾何問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知a>0,b>0,函數(shù)f(x)=|x-a|+|x+b|的最小值為2.
(Ⅰ)求a+b的值;
(Ⅱ)證明:a2+a>2與b2+b>2不可能同時(shí)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求下列函數(shù)的值域:
(1)y=$\frac{3x+1}{x-2}$;
(2)y=$\frac{5}{2{x}^{2}-4x+3}$;
(3)y=x+4$\sqrt{1-x}$;
(4)y=$\frac{{x}^{2}}{x-1}$(x>1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x2+ln(x-a),a∈R.
(Ⅰ)若f(x)有兩個(gè)不同的極值點(diǎn),求a的取值范圍;
(Ⅱ)當(dāng)a≤-2時(shí),令g(a)表示f(x)在[-1,0]上的最大值,求g(a)的表達(dá)式;
(Ⅲ)求證:$\frac{3{n}^{2}+5n}{8{n}^{2}+24n+16}$+ln$\sqrt{n+1}$$<1+\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}$,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.四面體ABCD中,∠CDB=∠CAB=90°,∠BCD=∠BCA=30°,BC=2,點(diǎn)D在平面ABC上的射影在棱BC上,點(diǎn)M在棱BD上,BM=λBD.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)二面角A-MC-B的余弦值為$\frac{\sqrt{5}}{5}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,是某幾何體的三視圖和直觀圖,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形,點(diǎn)P在棱BC上,且AP∥平面CDE.
(Ⅰ)求點(diǎn)P到平面CDE的距離;
(Ⅱ)求二面角A-CD-E的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PD⊥底面ABCD,且PD=CD=$\frac{\sqrt{2}}{2}$BC,過棱PC的中點(diǎn)E,作EF⊥PB交PB于點(diǎn)F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF;
(2)求異面直線AD與BE所成角的余弦值;
(3)二面角B-DE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在四棱錐P-ABCD中,底面ABCD是正方形.側(cè)棱PA⊥底面ABCD.M、N分別為PD、AC的中點(diǎn).
(1)證明:平面PAC⊥平面MND:
2)若直線MN與平面ABCD所成角的余弦值為$\frac{2\sqrt{5}}{5}$.求二面角A-MN-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)的定義域?yàn)镽,f(1)=3,對(duì)任意x∈R,f′(x)<2,則f(x)<2x+1的解集為( 。
A.(1,+∞)B.(-1,1)C.(-∞,1)D.(-∞,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案