8.a(chǎn)1=1,an+1=$\frac{{3a}_{n}}{{2a}_{n}+1}$,則an=1.

分析 根據(jù)遞推公式,和a1=1,代入即可得到答案.

解答 解:∵an+1=$\frac{{3a}_{n}}{{2a}_{n}+1}$,a1=1,
∴a2=$\frac{3{a}_{1}}{2{a}_{1}+1}$=$\frac{3}{2+1}$=1,
∴a3=1,

∴an=1.
故答案為:1.

點(diǎn)評 本題考查了數(shù)列的遞推公式和數(shù)列通項(xiàng)公式的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖是一個(gè)算法的程序框圖,當(dāng)輸入x的值為3時(shí),輸出y的結(jié)果恰好是$\frac{1}{3}$,則?處的關(guān)系式可以是( 。
A.y=x2B.y=3-xC.y=3xD.y=x${\;}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow b=(-3,\;1)$,若k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$垂直,則實(shí)數(shù)k=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若(z-1)2=-1,則z的值為( 。
A.1+iB.1±iC.2+iD.2±i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知在數(shù)列{an}中,a1=1,an+1=2n+1an,n∈N*,則an=${2}^{\frac{(n-1)(n+2)}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}的首項(xiàng)a1=a,其前n項(xiàng)和為Sn,且滿足Sn+Sn-1=3n2+2n+4(n≥2),若對任意的n∈N*,an<an+1恒成立,則a的取值范圍是( 。
A.($\frac{23}{4}$,$\frac{29}{4}$)B.($\frac{20}{3}$,$\frac{29}{4}$)C.($\frac{23}{4}$,$\frac{20}{3}$)D.(-∞,$\frac{20}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)$\frac{dy}{dx}$=$\frac{x}{y}$,y|x=0=4,則微分方程的通解為$\frac{1}{2}{y}^{2}-\frac{1}{2}{x}^{2}+C=0$;特解為$\frac{1}{2}{y}^{2}-\frac{1}{2}{x}^{2}-8=0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)z為復(fù)數(shù),D為滿足條件||z|-1|+|z|-1=0的點(diǎn)Z所構(gòu)成的圖形的邊界.
(1)若復(fù)數(shù)W=$\frac{1}{2}$z+1-2i(其中z∈D),試證明:表示復(fù)數(shù)W的點(diǎn)在某一圓上運(yùn)動,并寫出此圓的復(fù)數(shù)方程;
(2)若滿足條件|z+$\frac{1}{2}$|=|z-$\frac{3}{2}$i|的點(diǎn)所構(gòu)成的圖形D′與D有兩個(gè)公共點(diǎn)A,B,且OA,OB的傾斜角分別為α,β(O為原點(diǎn)),求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在同一平面內(nèi),∠AOB=150°,∠AOC=120°,|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=3,|$\overrightarrow{OC}$|=4.
(1)試用$\overrightarrow{OB}$和$\overrightarrow{OC}$表示$\overrightarrow{OA}$;
(2)是否存在實(shí)數(shù)λ,使得$\overrightarrow{AD}$=$λ\overrightarrow{AC}$,$\overrightarrow{AC}$$•\overrightarrow{BD}$=0同時(shí)成立?若存在,求出λ的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案