【題目】德國著名數(shù)學家狄利克雷在數(shù)學領域成就顯著,以其命名的函數(shù)被稱為狄利克雷函數(shù),其中R為實數(shù)集,Q為有理數(shù)集,以下命題正確的個數(shù)是( )

下面給出關(guān)于狄利克雷函數(shù)f(x)的五個結(jié)論:

①對于任意的xR,都有f(f(x))=1;

②函數(shù)f(x)偶函數(shù);

③函數(shù)f(x)的值域是{0,1};

④若T0T為有理數(shù),則f(x+T)=f(x)對任意的xR恒成立;

⑤在f(x)圖象上存在不同的三個點A,B,C,使得△ABC為等邊角形.

A.2B.3C.4D.5

【答案】D

【解析】

①分,兩種情況從內(nèi)到外,利用求值判斷.②分兩種情況,利用奇偶性定義判斷.③當時,;當時,判斷.④分,兩種情況,利用周期函數(shù)的定義判斷.⑤取 , 判斷.

①當時,,則;當時,,則,所以對于任意的xR,都有f(f(x))=1;故正確.

②當時,,;當時,,,所以函數(shù)f(x)偶函數(shù);故正確.

③當時,;當時,,所以函數(shù)f(x)的值域是{0,1};故正確.

④當時,因為T≠0T為有理數(shù),所以,則f(x+T)=1=f(x);當 時,因為T≠0T為有理數(shù),所以,則f(x+T)=0=f(x),所以對任意的xR恒成立;故正確.

⑤取 構(gòu)成以為邊長的等邊三角形,故正確.

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責任擔當之勇、又有科學防控之智.某校高三學生也展開了對這次疫情的研究,一名同學在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從202021日至27日期間,日期和全國累計報告確診病例數(shù)量(單位:萬人)之間的關(guān)系如下表:

日期

1

2

3

4

5

6

7

全國累計報告確診病例數(shù)量(萬人)

1.4

1.7

2.0

2.4

2.8

3.1

3.5

1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進行分析說明,是否可以用線性回歸模型擬合的關(guān)系?

2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01.并預測210日全國累計報告確診病例數(shù).

參考數(shù)據(jù):,,.

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計公式分別為:

,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為菱形, , 平面, , 中點.

(1)求證: ∥平面;

(2)求證: ;

(3)若為線段上的點,當三棱錐的體積為時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(1)當=-1時,求的單調(diào)區(qū)間及值域;

(2)若在()上為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐的底面為直角梯形,,,為正三角形.

(1)點為棱上一點,若平面,,求實數(shù)的值;

(2)求點B到平面SAD的距離.

【答案】(1);(2)

【解析】試題分析:(1)由平面,可證,進而證得四邊形為平行四邊形,根據(jù),可得;

(2)利用等體積法可求點到平面的距離.

試題解析:((1)因為平面SDM,

平面ABCD,

平面SDM 平面ABCD=DM,

所以,

因為,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點.

因為

.

(2)因為 ,

所以平面,

又因為平面,

所以平面平面,

平面平面,

在平面內(nèi)過點直線于點,則平面

中,

因為,所以,

又由題知,

所以,

由已知求得,所以,

連接BD,則,

又求得的面積為,

所以由點B 到平面的距離為.

型】解答
結(jié)束】
19

【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.

(1)請分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;

(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標滿足如圖所示的直方圖,其中當某天的派送量指標在 時,日平均派送量為單.

若將頻率視為概率,回答下列問題:

①根據(jù)以上數(shù)據(jù),設每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪的分布列,數(shù)學期望及方差;

②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.

(參考數(shù)據(jù): , , , , , ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) , 的導數(shù),若存在,使得成立,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,離心率,點在橢圓上.

(1)求橢圓C的標準方程;

(2)設點P是橢圓C上一點,左頂點為A,上頂點為B,直線PA與y軸交于點M,直線PB與x軸交于點N,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌服裝店五一進行促銷活動,店老板為了擴大品牌的知名度同時增強活動的趣味性,約定打折辦法如下:有兩個不透明袋子,一個袋中放著編號為1,2,3的三個小球,另一個袋中放著編號為4,5的兩個小球(小球除編號外其它都相同),顧客需從兩個袋中各抽一個小球,兩球的編號之和即為該顧客買衣服所打的折數(shù)(如,一位顧客抽得的兩個小球的編號分別為2,5,則該顧客所習的買衣服打7折).要求每位顧客先確定購買衣服后再取球確定打折數(shù).已知三位顧客各買了一件衣服.

(1)求三位顧客中恰有兩位顧客的衣服均打6折的概率;

(2)兩位顧客都選了定價為2000元的一件衣服,設為打折后兩位顧客的消費總額,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2a·4x-2x-1.

(1)當a=1時,解不等式f(x)>0;

(2)當a=,x∈[0,2]時,求f(x)的值域.

查看答案和解析>>

同步練習冊答案