【題目】已知

(1)當=-1時,求的單調(diào)區(qū)間及值域;

(2)若在()上為增函數(shù),求實數(shù)的取值范圍.

【答案】(1)f(x)的值域為(-∞,2-log23].增區(qū)間為,減區(qū)間為.(2)

【解析】

(1)a=-1時,f(x)=log(x2x+1),log(x2x+1)≤log=2-log23,

f(x)的值域為(-∞,2-log23].由對數(shù)式的真數(shù)大于0求得函數(shù)的定義域,得到內(nèi)函數(shù)的單調(diào)區(qū)間,結(jié)合復(fù)合函數(shù)的單調(diào)性得答案.

(2)用復(fù)合函數(shù)的單調(diào)性來求解,令u(x)=x2axa2a

由“若f(x)上為增函數(shù),”,可知u(x)應(yīng)在上為減函數(shù)且

u(x)>0在恒成立.再用“對稱軸在區(qū)間的右側(cè),且最小值大于零”求解可得結(jié)果.

解 (1)a=-1時,f(x)=log(x2x+1),

x2x+1=2,

log(x2x+1)≤log=2-log23,

f(x)的值域為(-∞,2-log23].

yx2x+1上遞減,在上遞增,y=logx(0,+∞)上遞減,

f(x)的增區(qū)間為

減區(qū)間為.

(2)u(x)=x2axa2a

f(x)上為單調(diào)增函數(shù)

又∵y=logu(x)為單調(diào)減函數(shù),

u(x)上為單調(diào)減函數(shù),且u(x)>0上恒成立.

因此

解得-1≤a.

故實數(shù)a的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分7分)選修4-4:坐標系與參數(shù)方程

在平面直角坐標中,直線的參數(shù)方程為為參數(shù)),P、Q分別為直線與x軸、y軸的交點,線段PQ的中點為M.

)求直線的直角坐標方程;

)以坐標原點O為極點,軸的正半軸為極軸建立極坐標系,求點M的極坐標和直線OM的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的一個上界.已知函數(shù) .

(1)若函數(shù)為奇函數(shù),求實數(shù)的值;

(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;

(3)若函數(shù)上是以3為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(2,0),B(0,2),,O為坐標原點.

(1),求sin 2θ的值;

(2)若,且θ∈(-π,0),求的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)是單調(diào)減函數(shù),且為偶函數(shù).

(1)求的解析式;

(2)討論的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知梯形ABCD中,ADBC,ABC =BAD =,AB=BC=2AD=4E、F分別是ABCD上的點,EFBC,AE = ,GBC的中點。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF

1)若以FB、C、D為頂點的三棱錐的體積記為,求的最大值;

2)當 取得最大值時,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】片森林原來面積為a,計劃每年砍伐森林面積是上一年末森林面積的p%,當砍伐到原來面積的一半時,所用時間是10年,已知到今年末為止,森林剩余面積為原來面積的,為保護生態(tài)環(huán)境,森林面積至少要保留原來面積的

(1)求每年砍伐面積的百分比p%;

(2)到今年為止,該森林已砍伐了多少年?

(3)今年以后至多還能再砍伐多少年?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系xOy中,角α的頂點是原點,始邊與x軸正半軸重合,終邊交單位圓于點A,且.將角α的終邊按逆時針方向旋轉(zhuǎn),交單位圓于點B.記Ax1y1),Bx2y2).

(Ⅰ)若,求x2;

(Ⅱ)分別過A,Bx軸的垂線,垂足依次為C,D.記AOC的面積為S1,△BOD的面積為S2.若S1=2S2,求角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的奇函數(shù).

(1)求的值;

(2)當,時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案