20.若$\underset{lim}{n→∞}$$\frac{a{n}^{2}+bn+8}{2n+5}$=5,求常數(shù)a,b的值.

分析 由極限存在洛必達(dá)法則可知,分子n2項(xiàng)的系數(shù)為0,n項(xiàng)的系數(shù)為10.

解答 解:若$\underset{lim}{n→∞}$$\frac{a{n}^{2}+bn+8}{2n+5}$=5,極限存在且等于5,
∴a=0,b=10

點(diǎn)評(píng) 本題考查極限存在的定義和洛必達(dá)法則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.分別從A網(wǎng)和B網(wǎng)上對(duì)某一型號(hào)家用電器的日銷售量(單位:臺(tái))進(jìn)行統(tǒng)計(jì),最近50天的統(tǒng)計(jì)結(jié)果知下:
日銷售量(臺(tái)) 100150 200 
 頻數(shù) 10 25 15
 頻率 0.2 0.5 0.3
(A網(wǎng))
日銷售量(臺(tái)) 100150 200 
 頻數(shù) 15 15 20
 頻率 0.3 0.3 0.4
(B網(wǎng))
若以上表中頻率作為概率,且每天的銷售量相互獨(dú)立.
(1)這兩個(gè)平臺(tái),哪一個(gè)平臺(tái)該產(chǎn)品的銷售量更穩(wěn)定些;
(2)以A網(wǎng)為研究對(duì)象,已知每臺(tái)該電器的銷售利潤(rùn)為0.2(千元),用ξ表示該種電器2天銷售利潤(rùn)的和(單位:千元),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知兩點(diǎn)A(-3,$\sqrt{3}$),B($\sqrt{3}$,-1),則直線AB的傾斜角θ等于( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5}{6}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知3$\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$-m≤0在x∈[-$\frac{5π}{6}$,$\frac{π}{6}$]上有解但不恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.[-$\sqrt{3}$,+∞)B.(-∞,$\sqrt{3}$]C.[-$\sqrt{3}$,3)D.[-$\sqrt{3}$,+$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則$\frac{y}{x-3}$的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,A,B,C的對(duì)邊分別為a,b,c,設(shè)M為BC的中點(diǎn),若∠BAC=$\frac{π}{3}$,b=2,AM=$\frac{\sqrt{7}}{2}$,則△ABC的面積為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|x2+3x-4≤0},B={x|x=2n+1,n∈Z},則集合A∩B中元素的個(gè)數(shù)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示的是函數(shù)y=2sin(ωx+φ)(|φ|<$\frac{π}{2}$)的部分圖象,那么( 。
A.ω=$\frac{10}{11}$,φ=$\frac{π}{6}$B.ω=$\frac{10}{11}$,φ=-$\frac{π}{6}$C.ω=2,φ=$\frac{π}{6}$D.ω=2,φ=-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一條光線沿直線2x-y+2=0照射到y(tǒng)軸后反射,則反射光線所在的直線方程為( 。
A.2x+y-2=0B.2x+y+2=0C.x+2y+2=0D.x+2y-2=0

查看答案和解析>>

同步練習(xí)冊(cè)答案