8.已知3$\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$-m≤0在x∈[-$\frac{5π}{6}$,$\frac{π}{6}$]上有解但不恒成立,則實(shí)數(shù)m的取值范圍是(  )
A.[-$\sqrt{3}$,+∞)B.(-∞,$\sqrt{3}$]C.[-$\sqrt{3}$,3)D.[-$\sqrt{3}$,+$\sqrt{3}$]

分析 利用根據(jù)二倍角公式和兩角和公式對(duì)函數(shù)解析式化簡(jiǎn)整理,確定m的不等式關(guān)系,進(jìn)而利用x的范圍和正弦函數(shù)的性質(zhì)確定
$\sqrt{6}sin(\frac{x}{2}+\frac{π}{6})$的范圍,進(jìn)而求得m的范圍.

解答 解:3$\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$-m,
=$\frac{3\sqrt{2}}{2}sin\frac{x}{2}$+$\frac{\sqrt{6}}{2}cos\frac{x}{2}$-m,
=$\sqrt{6}sin(\frac{x}{2}+\frac{π}{6})$-m≤0,
∴m≥$\sqrt{6}sin(\frac{x}{2}+\frac{π}{6})$,
x∈[-$\frac{5π}{6}$,$\frac{π}{6}$],
$-\frac{π}{4}≤\frac{x}{2}+\frac{π}{6}≤\frac{π}{4}$,
$-\sqrt{3}≤\sqrt{6}sin(\frac{x}{2}+\frac{π}{6})≤\sqrt{3}$,有解但不恒成立
∴m≥-$\sqrt{3}$.
故答案為:A.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)的化簡(jiǎn)求值,三角函數(shù)的最值問(wèn)題,不等式恒成立的問(wèn)題.涉及了知識(shí)面較多,考查了知識(shí)的綜合性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,以O(shè)為原點(diǎn),以x軸正半軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為ρ2-4ρsinθ+3=0,直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=3+\frac{\sqrt{2}}{2}t}\end{array}\right.$,(t為參數(shù)).
(1)寫(xiě)出曲線(xiàn)C和直線(xiàn)l的直角坐標(biāo)方程;
(2)若點(diǎn)A,B是曲線(xiàn)C上的兩動(dòng)點(diǎn),點(diǎn)P是直線(xiàn)l上一動(dòng)點(diǎn),求∠APB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.tan10°tan20°-$\frac{tan20°}{tan10°}$=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知菱形ABCD中,AC=2,BD=4,E,F(xiàn)分別在AB,AD上,且關(guān)于直線(xiàn)AC對(duì)稱(chēng),則$\overrightarrow{BF}•\overrightarrow{CE}$的最大值為( 。
A.$\frac{25}{12}$B.2C.$\frac{5}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=sin$\frac{πx}{2}$,任取t∈R,若函數(shù)f(x)在區(qū)間[t,t+2]上的最大值為Mt,最小值為mt,記h(t)=Mt-mt
(1)求h(0)的值,并求出方程h(t)=2的根;
(2)當(dāng)t∈[-2,2]時(shí),求函數(shù)h(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.log3(log82)等于( 。
A.-1B.1C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若$\underset{lim}{n→∞}$$\frac{a{n}^{2}+bn+8}{2n+5}$=5,求常數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求下列函數(shù)的周期及最大值、最小值.
(1)y=sin3xcos3x;
(2)y=$\frac{1}{2}$-sin2x;
(3)y=sin(x-$\frac{π}{3}$)cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.經(jīng)過(guò)雙曲線(xiàn)x2-$\frac{{y}^{2}}{3}$=1的左焦點(diǎn)F1作斜率為2的弦AB,求:
(1)線(xiàn)段AB的長(zhǎng);
(2)設(shè)點(diǎn)F2為右焦點(diǎn),求△F2AB的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案