20.下面是高考第一批錄取的一份志愿表:
志   愿學    校專   業(yè)
第一志愿1第1專業(yè)第2專業(yè)
第二志愿2第1專業(yè)第2專業(yè)
第三志愿3第1專業(yè)第2專業(yè)
現(xiàn)有4所重點院校,每所院校有3 個專業(yè)是你較為滿意的選擇,如果表格填滿且規(guī)定學校沒有重復(fù),同一學校的專業(yè)也沒有重復(fù)的話,學校錄取是按先一再二最后三志愿的順序,專業(yè)是先錄取第一專業(yè),再第二專業(yè)的原則.你將有不同的填寫方法的種數(shù)是( 。
A.43•(A323B.43•(C323C.A43•(C323D.A43•(A323

分析 本題是一個分步計數(shù)問題,首先從4個院校中選三個排列,在每一個院校中又有3個專業(yè)是你較為滿意的選擇,從三個專業(yè)中選兩個專業(yè),每一個院校都有A32種結(jié)果,根據(jù)分步計數(shù)原理得到結(jié)果.

解答 解:由題意知本題是一個分步計數(shù)問題,
首先從4個院校中選三個排列,有A43種結(jié)果,
在每一個院校中又有3個專業(yè)是你較為滿意的選擇,
∴從三個專業(yè)中選兩個專業(yè),每一個院校都有A32種結(jié)果,
∴根據(jù)分步計數(shù)原理知共有A43A32A32A32
故選D.

點評 本題考查排列組合的實際應(yīng)用,考查分步計數(shù)原理,是一個基礎(chǔ)題,解題的關(guān)鍵是讀懂題意.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)$f(x)=\left\{\begin{array}{l}\frac{1}{2}{x^2}-1,x∈[1,+∞)\\ \frac{1}{x},x∈(0,1)\\-x-1,x∈(-∞,0]\end{array}\right.$
(1)求$f[f(\frac{3}{2})]$的值
(2)請作出此函數(shù)的圖象
(3)若$f(x)=-\frac{1}{2}$,請求出此時自變量x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.下列結(jié)論中正確的有①④(寫出正確命題的序號)
①命題p:“?x∈R,x2-2≥0”的否定形式為?p:“?x∈R,x2-2<0”;
②“平面向量$\overrightarrow a$與$\overrightarrow b$的夾角是鈍角”的充分必要條件是“$\overrightarrow a•\overrightarrow b<0$”;
③命題“若a-b=1,則${a^2}+{b^2}>\frac{1}{2}$”的否命題是真命題;
④在△ABC中,“sinA=sinB”是“△ABC為等腰三角形”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列命題中錯誤的是( 。
A.命題“若x2-5x+6=0,則x=2”的逆否命題是“若x≠2,則x2-5x+6≠0”
B.對命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,x2+x+1≥0
C.若x,y∈R,則“x=y”是“xy≥($\frac{x+y}{2}$)2中等號成立”的充要條件
D.已知命題p和q,若p∨q為假命題,則命題p與q中必一真一假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.數(shù)列{an}中,a1=1,a2=$\frac{1}{3}$,an=$\frac{2}{{{a_{n-1}}}}$-$\frac{1}{{{a_{n+1}}}}$(n≥2),則a6a7=-$\frac{24057}{9607}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知a,b為正實數(shù),且a+b=1,則$\frac{1}{a}$+$\frac{1}$的最小值為4此時a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知2a=3,3b=8,則ab=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某學校餐廳每天供應(yīng)500名學生用餐,每星期一有A,B兩種菜可供選擇.調(diào)查資料表明,凡是在星期一選A種菜的學生,下星期一會有20%改選B種菜;而選B種菜的學生,下星期一會有30%改選A種菜,用an,bn分別表示在第n個星期的星期一選A種菜和選B種菜的學生人數(shù),若a1=300,則:
(1)求a2的值;
(2)判斷數(shù)列{an-300}是否常數(shù)數(shù)列,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.學校里開運動會,設(shè)全集U為所有參加運動會的學生,
A={x|x是參加一百米跑的學生},
B={x|x是參二百米跑的學生},
C={x|x是參加四百米跑的學生},
學校規(guī)定,每個參加上述比賽的同學最多只能參加兩項,下列集合運算能說明這項規(guī)定的是      ( 。
A.(A∪B)∪C=UB.(A∪B)∩C=∅C.(A∩B)∩C=∅D.(A∩B)∪C=C

查看答案和解析>>

同步練習冊答案