16.已知P是函數(shù)y=x2圖象上的一點,A(1,-1),則$\overrightarrow{OP}•\overrightarrow{OA}$的最大值為$\frac{1}{4}$.

分析 由條件可設(shè)P(x,x2),從而可得出$\overrightarrow{OP},\overrightarrow{OA}$的坐標(biāo),進行數(shù)量積的坐標(biāo)運算,即可求出$\overrightarrow{OP}•\overrightarrow{OA}=-{x}^{2}+x$,配方便可求出$\overrightarrow{OP}•\overrightarrow{OA}$的最大值.

解答 解:設(shè)P(x,x2),則:
$\overrightarrow{OP}=(x,{x}^{2}),\overrightarrow{OA}=(1,-1)$;
∴$\overrightarrow{OP}•\overrightarrow{OA}=-{x}^{2}+x=-(x-\frac{1}{2})^{2}+\frac{1}{4}$;
∴$\overrightarrow{OP}•\overrightarrow{OA}$的最大值為$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點評 考查點的坐標(biāo)的設(shè)法,向量數(shù)量積的坐標(biāo)運算,以及配方求最值的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\sqrt{2}$asin(2x+$\frac{π}{4}$)+a+b,(a≠0).
(1)若a>0,求f(x)的單凋遞增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時,f(x)的值域是[3,4],求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列拋物線中,焦點到準(zhǔn)線距離最小的是( 。
A.y2=-xB.y2=2xC.2x2=yD.x2=-4y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若m、n為兩條不重合的直線,α、β為兩個不重合的平面,
①如果α∥β,m?α,那么m∥β;
②如果m∥β,m?α,α∩β=n,那么m∥n;
③如果m⊥α,β⊥α,那么m∥β;
④如果m⊥n,m⊥α,n∥β,那么α⊥β;
其中正確的命題是( 。
A.①②B.①③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若sinα>0且tanα<0,則$\frac{α}{2}$的終邊在(  )
A.第一象限B.第二象限
C.第一象限或第三象限D.第三象限或第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某中學(xué)號召學(xué)生在暑假期間至少參加一次社會公益活動(以下簡稱活動).該校文學(xué)社共有100名學(xué)生,他們參加活動的次數(shù)統(tǒng)計如圖所示,則從文學(xué)社中任意選1名學(xué)生,他參加活動次數(shù)為3的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{6}{10}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)(1+i)(x+yi)=2,其中x,y是實數(shù),則|2x+yi|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知動點P(x,y)到定點A(2,0)的距離與到定直線l:x=-2的距離相等.
(Ⅰ) 求動點P的軌跡C的方程;
(Ⅱ) 已知點B(-3,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.高為$\sqrt{2}$的四棱錐S-ABCD的底面是邊長為1的正方形,點S,A,B,C,D均在半徑為1的同一球面上,則底面ABCD的中心與頂點S之間的距離為$\frac{{\sqrt{10}}}{2}$..

查看答案和解析>>

同步練習(xí)冊答案