4.如圖,山頂上有一座鐵塔,在地面上一點A處測得塔頂B處的仰角α=60°,在山頂C處測得A點的俯角β=45°,已知塔高BC為50m,則山高CD等于25$({\sqrt{3}+1})$m.

分析 在△ABC中使用正弦定理解出AC,則CD=AC•sinβ.

解答 解:∵α=60°,β=45°,
∴∠ABD=30°.∠BAC=15°.
在△ABC中,由正弦定理得$\frac{BC}{sin∠BAC}=\frac{AC}{sinB}$,即$\frac{50}{sin15°}=\frac{AC}{sin30°}$,
解得AC=25($\sqrt{6}+\sqrt{2}$).
∴CD=AC•sin45°=25($\sqrt{3}+1$).
故答案為:25($\sqrt{3}+1$).

點評 本題考查了正弦定理,解三角形的應(yīng)用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知圓心為C的圓經(jīng)過點A(1,1)和B(2,-2),且圓心C在直線l:x-y+1=0上,則點C與坐標原點的距離為( 。
A.$\sqrt{13}$B.5C.13D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.直線y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長為$2\sqrt{3}$,則k=( 。
A.±$\frac{\sqrt{3}}{3}$B.±$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)復數(shù)z滿足z(2-3i)=6+4i(i為虛數(shù)單位),則|z|=(  )
A.4B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.一塊邊長為8cm的正方形鐵板按如圖所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐(底面是正方形,從頂點向底面作垂線,垂足為底面中心的四棱錐)形容器,O為底面ABCD的中心,則側(cè)棱SC與底面ABCD所成角的余弦值為(  )
A.$\frac{{2\sqrt{3}}}{5}$B.$\frac{{3\sqrt{2}}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.(1)用反證法證明:已知實數(shù)a,b,c滿足a+b+c=1,求證:a、b、c中至少有一個數(shù)不大于$\frac{1}{3}$
(2)用分析法證明:$\sqrt{6}$+$\sqrt{7}$>2$\sqrt{2}$+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.數(shù)列0,$\frac{2}{3}$,$\frac{4}{5}$,$\frac{6}{7}$,…的一個通項公式為( 。
A.an=$\frac{n-1}{n+1}$  (n∈N*B.an=$\frac{n-1}{2n+1}$  (n∈N*
C.an=$\frac{2n}{2n+1}$ (n∈N*D.an=$\frac{2(n-1)}{2n-1}$ (n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.給出的是計算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{8}$+$\frac{1}{10}$的值的一個流程圖,其中判斷框內(nèi)應(yīng)填人的條件是( 。
A.i>10B.i≥10C.i>5D.i≥5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.下列命題中真命題的是(1)(2)(3)(4)  (寫出所有真命題的序號)
(1)命題“若x=3,則x2-7x+12=0”及其逆命題,否命題,逆否命題中正確的有2個.
(2)已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為12.
(3)回歸分析是對具有相關(guān)關(guān)系的兩個變量進行統(tǒng)計分析的一種常用方法.
(4)已知△ABC中,角A,B,C的對邊分別為a,b,c,則$\frac{c+1}{a+b+c+1}$<$\frac{a+b+1}{2(a+b)+1}$.

查看答案和解析>>

同步練習冊答案