15.直線y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長為$2\sqrt{3}$,則k=( 。
A.±$\frac{\sqrt{3}}{3}$B.±$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

分析 求出圓(x-2)2+(y-3)2=4的圓心,半徑,圓心(2,3)到直線y=kx+3的距離,由此利用直線y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長為$2\sqrt{3}$,由勾股定理能求出k.

解答 解:圓(x-2)2+(y-3)2=4的圓心(2,3),半徑r=2,
圓心(2,3)到直線y=kx+3的距離d=$\frac{|2k|}{\sqrt{{k}^{2}+1}}$,
∵直線y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長為$2\sqrt{3}$,
∴由勾股定理得${r}^{2}=nhenzhv^{2}+(\frac{2\sqrt{3}}{2})^{2}$,
即4=$\frac{4{k}^{2}}{{k}^{2}+1}$+3,
解得k=$±\frac{\sqrt{3}}{3}$.
故選:A.

點評 本題考查直線的斜率的求法,是中檔題,解題時要認(rèn)真審題,注意圓的性質(zhì)、點到直線的距離公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,直線OA與截面ABC所成的角為30°,則球O的表面積為( 。
A.B.16πC.$\frac{4}{3}$πD.$\frac{16}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.2015年7月31日,國際奧委會在吉隆坡正式宣布2022年奧林匹克冬季奧運會(簡稱冬奧會)在北京和張家口兩個城市舉辦.某中學(xué)為了普及奧運會知識和提高學(xué)生參加體育運動的積極性,舉行了一次奧運知識競賽.隨機抽取了30名學(xué)生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學(xué)生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(1)在這30名學(xué)生中,甲組學(xué)生中有男生7人,乙組學(xué)生中有女生12人,試問有沒有90%的把握認(rèn)為成績分在甲組或乙組與性別有關(guān);
(2)①如果用分層抽樣的方法從甲組和乙組中抽取5人,再從這5人中隨機抽取2人,那么至少有1人在甲組的概率是多少?
②用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機選取3人,用ξ表示所選3人中甲組的人數(shù),試寫出ξ的分布列,并求出ξ的數(shù)學(xué)期望.附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$;其中n=a+b+c+d
獨立性檢驗臨界表:
P(K2>k00.1000.0500.010
K2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線ax-by+c=0(abc≠0)與圓O:x2+y2=1相離,且|a|+|b|>|c|,則|a|,|b|,|c|為邊長的三角形是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在三棱錐P-ABC中,平面PAC⊥平面ABC,△PAC為等腰直角三角形,PA⊥PC,AC⊥BC,BC=2AC=4,M為AB的中點.
(Ⅰ)求證:AC⊥PM;
(Ⅱ)求PC與平面PAB所成角的正弦值;
(Ⅲ)在線段PB上是否存在點N使得平面CNM⊥平面PAB?若存在,求出$\frac{PN}{PB}$的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.三棱錐D-ABC內(nèi)接于表面積為100π的球面,DA⊥平面ABC,且AB=8,AC⊥BC,∠BAC=30°,則三棱錐D-ABC的體積為16$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,四棱錐P-ABCD的底面是梯形,且AB∥CD,AB⊥平面PAD,E是PB中點,CD=PD=AD=$\frac{1}{2}$AB.
(Ⅰ)求證:CE⊥平面PAB;
(Ⅱ)若CE=$\sqrt{3}$,AB=4,求直線CE與平面PDC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,山頂上有一座鐵塔,在地面上一點A處測得塔頂B處的仰角α=60°,在山頂C處測得A點的俯角β=45°,已知塔高BC為50m,則山高CD等于25$({\sqrt{3}+1})$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,已知a=7,c=5,B=120°,則△ABC的面積為$\frac{35\sqrt{3}}{4}$.

查看答案和解析>>

同步練習(xí)冊答案