4.把函數(shù)$y=cos2x+\sqrt{3}sin2x$的圖象經(jīng)過變化而得到y(tǒng)=2sin2x的圖象,這個(gè)變化是( 。
A.向左平移$\frac{π}{12}$個(gè)單位B.向右平移$\frac{π}{12}$個(gè)單位
C.向左平移$\frac{π}{6}$個(gè)單位D.向右平移$\frac{π}{6}$個(gè)單位

分析 利用兩角和的正弦公式化簡(jiǎn)函數(shù)的解析式,再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:把函數(shù)$y=cos2x+\sqrt{3}sin2x$=2($\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x)=2sin(2x+$\frac{π}{6}$) 的圖象,
向右平移$\frac{π}{12}$個(gè)單位,可得到y(tǒng)=2sin2x的圖象,
故選:B.

點(diǎn)評(píng) 利用兩角和的正弦公式化簡(jiǎn)函數(shù)的解析式,再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.將正偶數(shù)集合{2,4,6,…}從小到大按第n組有2n個(gè)偶數(shù)進(jìn)行分組:{2,4},{6,8,10,12},{14,16,18,20,22,24},…,則2018位于( 。┙M.
A.30B.31C.32D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線y=x與拋物線y=x2所圍成的封閉圖形的面積是( 。
A.$\frac{1}{12}$B.$\frac{1}{8}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.?($\sqrt{x}$-$\frac{1}{2x}$)12的展開式的常數(shù)項(xiàng)為$\frac{495}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)隨機(jī)變量X等可能取1,2,3,…,n這n個(gè)值,如果P(X≤4)=0.4,則n等于10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.(A組題)已知實(shí)數(shù)x、y滿足|x|≤2,|y|≤1,則任取其中一對(duì)x、y的值,能使得x2+y2≤1的概率為( 。
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{8}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)矩形ABCD,以A、B為左右焦點(diǎn),并且過C、D兩點(diǎn)的橢圓和雙曲線的離心率之積為( 。
A.$\frac{1}{2}$B.2
C.1D.條件不夠,不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a,b∈R,則使得a>b成立的一個(gè)必要不充分條件為( 。
A.|a|>|b|B.a>b+1C.a>b-1D.2a>2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f(x)+f′(x)=x,f(1)=1,則f(x)的零點(diǎn)個(gè)數(shù)為( 。
A.0B.1C.2D.至少3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案