【題目】在四棱錐中,底面是平行四邊形,,側(cè)面底面,, ,,分別為,的中點(diǎn),過的平面與面交于,兩點(diǎn).

(1)求證:

(2)求證:平面平面;

(3)設(shè),當(dāng)為何值時(shí)四棱錐的體積等于,求的值.

【答案】(1)見解析;(2)見解析;(3)

【解析】

(1)先證明,從而得到線面平行,進(jìn)而得到

(2)利用面面垂直得到線面垂直,進(jìn)而得到,結(jié)合平行四邊形的特點(diǎn)可得,從而得到平面,可證結(jié)論;

(3)利用體積可得幾何體的高,利用高之比可得.

(1)在平行四邊形中 ,由分別為,的中點(diǎn),得,

平面平面,∴平面

的平面與面交于,∴

(2)在平行四邊形中,∵,,∴即有,由(1)得,∴

∵側(cè)面底面,且,平面平面,

,∴底面

又∵底面,∴,

又∵,平面平面,

平面,∴平面,∴平面平面

(3)由題得,設(shè)四棱錐的高為h,∴,∴

,∴

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個(gè)坑進(jìn)行播種,每個(gè)坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立.對每一個(gè)坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.

(1)當(dāng)取何值時(shí),有3個(gè)坑要補(bǔ)播種的概率最大?最大概率為多少?

(2)當(dāng)時(shí),用表示要補(bǔ)播種的坑的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),把函數(shù)的圖象向右平移個(gè)單位,再把圖象上各點(diǎn)的橫坐標(biāo)縮小到原來的一半,縱坐標(biāo)不變,得到函數(shù)的圖象,當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為中心,以坐標(biāo)軸為對稱軸的橢圓C經(jīng)過點(diǎn)M(2,1)N(,-).

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)經(jīng)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓C相交于異于M點(diǎn)的A,B兩點(diǎn),求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面且邊長為的菱形,側(cè)面為正三角形,其所在平面垂直于底面,若的中點(diǎn),的中點(diǎn).

1)求證:平面

2)求證:;

3)在棱上是否存在一點(diǎn),使平面平面,若存在,確定點(diǎn)的位置;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過點(diǎn)的直線的參數(shù)方程為:為參數(shù)),直線與曲線分別交于、兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)求線段的長和的積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為矩形,O,E分別為AD,PB的中點(diǎn),平面平面ABCD,.

1)求證:平面PCD;

2)求證:平面PCD

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Ox2y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(ab)向圓O引切線PQ,切點(diǎn)為Q,|PQ|=|PA|成立,如圖.

(1)ab間的關(guān)系;

(2)|PQ|的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形為矩形,平面,連接,,,,,則下列各組向量中,數(shù)量積不為零的是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案