如圖,邊長為
的等邊△
所在的平面垂直于矩形
所在的平面,
,
為
的中點.
(1)證明:
;
(2)求二面角
的大小.
⑴證明略⑵二面角
為
證明:(1)以
點為原點,分別以直線
為
軸,
軸,建立如圖所示的空間直角坐標系
,依題意,
可得
,
∴
,
,
∴
即
,
∴
.
(2)設(shè)
,且
平面
,則
,
即
,
∴
,即
,
取
,得
,
取
,顯然
平面ABCD,
∴
,
結(jié)合圖形可知,二面角
為
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
下列命題,其中正確命題的個數(shù)是( )
①以直角三角形的一邊為對稱軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓錐
②以直角梯形的一腰為對稱軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓臺
③圓柱、圓錐、圓臺的底面都是圓
④一個平面去截一個圓錐得到一個圓錐和一個圓臺
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,小明設(shè)計了某個產(chǎn)品的包裝盒,他少設(shè)計了其中一部分,請你把它補上,使其成為兩邊均有蓋的正方體盒子.
(1)你有__________種彌補的辦法.
(2)任意畫出一種成功的設(shè)計圖.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如右圖所示,在正三棱柱ABC—A
1B
1C
1中,AB=3,AA
1=4,M為AA
1的中點,P是BC上一點,且由P沿棱柱側(cè)面經(jīng)過棱CC
1到M的最短路線長為
,設(shè)這條最短路線與CC
1的交點為N.求:
(1)該三棱柱的側(cè)面展開圖的對角線長;
(2)PC和NC的長.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,在正方體ABCD-A
1B
1C
1D
1中,E、F分別為CC
1、AA
1的中點,畫出平面BED
1F 與平面ABCD的交線.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示的幾何體中,四邊形AA
1B
1B是邊長為3的正方形,CC
1=2,CC
1∥AA
1,這個幾何體是棱柱嗎?若是,指出是幾棱柱.若不是棱柱,請你試用一個平面截去一部分,使剩余部分是一個棱長為2的三棱柱,并指出截去的幾何體的特征,在立體圖中畫出截面.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,直三棱柱ABC—A
1B
1C
1中,B
1C
1=A
1C
1,AC
1⊥A
1B,M、N分別是A
1B
1、AB的中點.
(1)求證:C
1M⊥平面A
1ABB
1;
(2)求證:A
1B⊥AM;
(3)求證:平面AMC
1∥平面NB
1C;
(4)求A
1B與B
1C所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
下列幾何體中,
是棱柱,
是棱錐,
是棱臺.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知正三棱柱
的底面邊長是
,
、E是
、BC的中點,AE=DE
(1)求此正三棱柱的側(cè)棱長;(2)正三棱柱
表面積;
查看答案和解析>>