分析 (1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于a,b的方程組,解出即可.
(2)求出$\sqrt{{{|k}_{1}k}_{2}|}$的解析式,根據(jù)基本不等式的性質(zhì)證明即可.
解答 解:(1)f′(x)=3x2+2ax+b,
由題意得$\left\{\begin{array}{l}{f(3)=0}\\{f′(3)=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=-6}\\{b=9}\end{array}\right.$,
故f(x)=x3-6x2+9x;
(2)f′(x)=3x2-12x+9=3(x-1)(x-3),
∵1≤xi≤3(i=1,2),
故xi-1≥0,3-xi≥0,(i=1,2),k1≤0,k2≤0,
$\sqrt{{{|k}_{1}k}_{2}|}$=$\sqrt{[3{(x}_{1}-1){(x}_{1}-3)][3{(x}_{2}-1){(x}_{2}-3)]}$
=3$\sqrt{{(x}_{1}-1)(3{-x}_{2})}$•$\sqrt{{(x}_{2}-1)(3{-x}_{1})}$
≤3•$\frac{{(x}_{1}-1)+(3{-x}_{2})}{2}$•$\frac{{(x}_{2}-1)+(3{-x}_{1})}{2}$
=3•$\frac{4{-{(x}_{1}{-x}_{2})}^{2}}{4}$=3(1-$\frac{m}{4}$).
∴$\sqrt{|{{k_1}{k_2}}|}≤3({1-\frac{m}{4}})$.
點(diǎn)評 本題考查函數(shù)解析式的求法,考查不等式的證明,考查導(dǎo)數(shù)的性質(zhì)及應(yīng)用等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{4\sqrt{5}}{5}$ | C. | 3 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com