8.在極坐標(biāo)系中,過(guò)點(diǎn)M($\sqrt{2}$,$\frac{π}{4}$)的直線l與極軸的夾角α=$\frac{π}{3}$,l的極坐標(biāo)方程為$\sqrt{3}$ρcosθ-ρsinθ-$\sqrt{3}$+1=0.

分析 先把點(diǎn)的極坐標(biāo)化為直角坐標(biāo),再求得直線方程的直角坐標(biāo)方程,化為極坐標(biāo)方程.

解答 解:在直角坐標(biāo)系中,過(guò)點(diǎn)M($\sqrt{2}$,$\frac{π}{4}$)的直線l與極軸的夾角α=$\frac{π}{3}$的直線的斜率為$\sqrt{3}$,
其直角坐標(biāo)方程是y-1=$\sqrt{3}$(x-1),即$\sqrt{3}$x+y-$\sqrt{3}$+1=0,
其極坐標(biāo)方程為 $\sqrt{3}$ρcosθ-ρsinθ-$\sqrt{3}$+1=0,
故答案為:$\sqrt{3}$ρcosθ-ρsinθ-$\sqrt{3}$+1=0,

點(diǎn)評(píng) 本題考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,求出直角坐標(biāo)系中直線的方程是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x+\frac{1}{x},x>0}\\{{x^3}+9,x≤0}\end{array}}\right.$,若關(guān)于x的方程f(x2+2x)=a有6個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍是(8,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知向量$\overrightarrow{m}=(3sinx.\frac{\sqrt{3}}{2}cosx),\overrightarrow{n}=(cosx-\frac{\sqrt{3}}{2}sinx,3cosx)$,函數(shù)f(x)=$\overrightarrow{m}•\overrightarrow{n}$.
(Ⅰ)求函數(shù)f(x)的解析式,并在給定的坐標(biāo)系中用“五點(diǎn)法”作出函數(shù)f(x)在[0,π]上的圖象;(須列表)
(Ⅱ)該函數(shù)的圖象由y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的變化得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知點(diǎn)O在△ABC內(nèi)部一點(diǎn),且滿(mǎn)足2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,則三角形△AOB,△BOC,△AOC的面積之比依次為( 。
A.4:2:3B.2:3:4C.4:3:2D.3:4:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.點(diǎn)A(2,0)是圓x2+y2=4上的定點(diǎn),點(diǎn)B(1,1)是圓內(nèi)一點(diǎn),P為圓上的動(dòng)點(diǎn).
(1)求線段AP的中點(diǎn)的軌跡方程
(2)求過(guò)點(diǎn)B傾斜角為135°的直線截圓所得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合U={0,1,2,3},A={0,1,2},B={2,3},則(∁UA)∩B( 。
A.{1,3}B.{2,3}C.{3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,設(shè)p:“a:b:c=A:B:C”,q:“△ABC是正三角形”,則(  )
A.p是q的充分不必要條件B.p是q的必要但不充分條件
C.p是q的充要條件D.p是q的既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若A=60°,c=4,a=4,則此三角形有( 。
A.兩解B.一解C.無(wú)解D.無(wú)窮多解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)α是第二象限角且cos(90°+α)=-$\frac{4}{5}$,求$\frac{[sin(180°-α)+cos(α-360°)]^{2}}{tan(180°+α)}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案