17.若一個(gè)圓錐的底面半徑是母線長的一半,側(cè)面積的數(shù)值是它的體積的數(shù)值的$\frac{1}{2}$,則該圓錐的底面半徑為( 。
A.$\sqrt{3}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.4$\sqrt{3}$

分析 根據(jù)已知中側(cè)面積和它的體積的數(shù)值相等,構(gòu)造關(guān)于r的方程,解得答案.

解答 解:設(shè)圓錐的底面半徑為r,則母線長為2r,
則圓錐的高h(yuǎn)=$\sqrt{3}$r,
∵側(cè)面積的數(shù)值是它的體積的數(shù)值的$\frac{1}{2}$,
∴由題意得:πr•2r=$\frac{1}{2}×\frac{1}{3}$$π{r}^{2}•\sqrt{3}r$,
解得:r=4$\sqrt{3}$.
故選:D.

點(diǎn)評 本題考查的知識點(diǎn)是旋轉(zhuǎn)體,熟練掌握圓錐的側(cè)面積公式和體積公式,是解答的關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,網(wǎng)格上小正方形的邊長為1,粗線畫出的是某空間幾何體的三視圖,則該幾何體的體積為(  )
A.12B.6C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知α為常數(shù),冪函數(shù)f(x)=xα滿足$f(\frac{1}{3})=2$,則f(3)=( 。
A.2B.$\frac{1}{2}$C.$-\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a>b,則下列結(jié)論正確的是( 。
A.a2>b2B.a+c>b+cC.ac>bcD.$\frac{1}{a}$>$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知雙曲線2x2-y2=1的一條弦AB的斜率為k,弦AB的中點(diǎn)為M,O為原點(diǎn),若OM的斜率為k0,則k0k=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在等腰直角三角形ABC中,AB=AC=a,且AD⊥BC于D,沿AD折成二面角B-AD-C后,$BC=\frac{{\sqrt{2}a}}{2}$,這時(shí)二面角B-AD-C的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若直線m被兩平行線l1:x-$\sqrt{3}$y+1=0與l2:x-$\sqrt{3}$y+3=0所截得的線段的長為1,則直線m的傾斜角的大小為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}滿足:a2=5,a5=11,其前n項(xiàng)和為Sn
(1)求an及Sn
(2)令bn=$\frac{4}{{{a_n}^2-1}}({n∈{N^*}})$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.記$min\{x,y\}=\left\{\begin{array}{l}y{,_{\;}}x≥y\\ x{,_{\;}}x<y\end{array}\right.$,設(shè)a,b為平面內(nèi)的非零向量,則(  )
A.$min\{|\overrightarrow a+\overrightarrow b|,|\overrightarrow a-\overrightarrow b|\}≤min\{|\overrightarrow a|,|\overrightarrow b|\}$B.$min\{|\overrightarrow a+\overrightarrow b{|^2},|\overrightarrow a-\overrightarrow b{|^2}\}≥{\overrightarrow a^2}+{\overrightarrow b^2}$
C.$min\{|\overrightarrow a+\overrightarrow b|,|\overrightarrow a-\overrightarrow b|\}≥min\{|\overrightarrow a|,|\overrightarrow b|\}$D.$min\{|\overrightarrow a+\overrightarrow b{|^2},|\overrightarrow a-\overrightarrow b{|^2}\}≤{\overrightarrow a^2}+{\overrightarrow b^2}$

查看答案和解析>>

同步練習(xí)冊答案