10.如圖,三棱錐的四個頂點P、A、B、C在同一個球面上,頂點P在平面ABC內的射影是H,若球心在直線PH上,則點H一定是△ABC的( 。
A.重心B.垂心C.內心D.外心

分析 由頂點P在平面ABC內的射影是H,球心在直線PH上,可得AH=BH=CH,即可得出結論.

解答 解:設球心為O,則OA=OB=OC.
由頂點P在平面ABC內的射影是H,球心在直線PH上,可得AH=BH=CH,
∴點H一定是△ABC的外心.
故選D.

點評 本題考查線面垂直,考查心事分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.把14個棱長為1的正方體,在地面上堆疊成如圖所示的幾何體,然后將露出的表面部分染成紅色.那么紅色部分的面積為( 。
A..21B..24C..33D..37

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某企業(yè)有甲、乙兩個分廠生產(chǎn)某種零件,按規(guī)定內徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質品,從甲、乙兩個分廠生產(chǎn)的零件中各抽取出500件,量其內徑尺寸的結果如下表:
甲廠的零件內徑尺寸:
分組[29.86,
29.90)
[29.90,29.94)[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
頻數(shù)1530125198773520
乙廠的零件內徑尺寸:
分組[29.86,
29.90)
[29.90,
29.94)
[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
頻數(shù)407079162595535
(1)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99.9%的把握認為“生產(chǎn)的零件是否為優(yōu)質品與在不同分廠生產(chǎn)有關”:
 甲廠乙廠合計
優(yōu)質品   
非優(yōu)質品   
合計   
附表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
0.1000.0500.0250.0100.001
2.7063.8415.0246.63510.828
(2)現(xiàn)用分層抽樣方法(按優(yōu)質品和非優(yōu)質品分二層),從乙廠中抽取5件零件,從這已知5件零件中任意抽取2件,將這2件零件中的優(yōu)質品數(shù)記為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知幾何體由兩個直棱柱組合而成,其三視圖和直觀圖如圖所示.設兩異面直線A1Q,PD所成的角為θ,則cosθ的值為$\frac{\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.己知函數(shù)f(x)=sinx($\sqrt{3}$cosx+sinx)+$\frac{1}{2}$.
(Ⅰ)若x∈[0,π],求f(x)遞增區(qū)間;
(Ⅱ)設△ABC的內角A,B,C的對應邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=2,sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知點F(0,1),一動圓過點F且與圓E:x2+(y+1)2=8內切.
(1)求動圓圓心的軌跡C的方程;
(2)設點A(a,0),點P為曲線C上任一點,求點A到點P距離的最大值d(a);
(3)在0<a<1的條件下,設△POA的面積為S1(O是坐標原點,P是曲線C上橫坐標為a的點),以d(a)為邊長的正方形的面積為S2,試求滿足S1≤mS2的正數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=ax2+bx-2(a>0,b>0)有兩個零點,其中一個零點在區(qū)間(1,2)內,則a+b的取值范圍為($\frac{1}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=aln(x+1)-x2,任取x1,x2∈(0,1)且x1≠x2,不等式$\frac{{f({x_1}+1)-f({x_2}+1)}}{{{x_1}-{x_2}}}$>1恒成立,則實數(shù)a的取值范圍為a≥15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設函數(shù)$f(x)=\frac{{3{x^2}+ax}}{e^x}({a∈R})$.若f(x)在x=0處取得極值,求曲線y=f(x)在點(1,f(1))處的切線方程為y=$\frac{3}{e}$x.

查看答案和解析>>

同步練習冊答案