10.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-3≥0}\\{x≤2}\end{array}\right.$,則z=-x+2y的最小值為0.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-3≥0}\\{x≤2}\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x=2}\\{x+y-3=0}\end{array}\right.$,解得A(2,1),
化目標(biāo)函數(shù)z=-x+2y為y=$\frac{x}{2}+\frac{z}{2}$,
由圖可知,當(dāng)直線y=$\frac{x}{2}+\frac{z}{2}$過A時,直線在y軸上的截距最小,z有最小值為0.
故答案為:0.

點(diǎn)評 本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,$\overrightarrow a$=($\sqrt{3}$,1),$\overrightarrow b$=(sinA,cosA),$\overrightarrow a$與$\overrightarrow b$的夾角為60°.
(Ⅰ)求角A的大;
(Ⅱ)若sin(B-C)=2cosBsinC,求$\frac{c}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.i為虛數(shù)單位,復(fù)數(shù)$\frac{i}{i-1}$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)到原點(diǎn)的距離為( 。
A.$\sqrt{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.等比數(shù)列{an}的前n和為Sn,已知S3=a2+10a1,a5=9,則a1=$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}滿足a1=1,an+1-an=n+1(n∈N*),則數(shù)列{${\frac{1}{a_n}}$}的前2015項(xiàng)的和為$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)a1,a2,b1,b2都是非零實(shí)數(shù),則“$\frac{{a}_{1}}{{a}_{2}}$=$\frac{_{1}}{_{2}}$”是“不等式a1x+b1>0與a2x+b2>0的解集相同”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A{x||2x-3|≤7},B={x|x<a},若A∪B=B,則實(shí)數(shù)a的取值范圍為(5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax3+bx+12在點(diǎn)x=2處取得極值-4.
(1)求a,b的值
(2)求f(x)在區(qū)間[-3,3]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點(diǎn),且PA=AB=AC=2,BC=2$\sqrt{2}$.
(Ⅰ)求證:CD⊥平面PAC;
(Ⅱ)N是棱AB中點(diǎn),求直線CN與平面MAB所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案