分析 (1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于a,b的方程,解出即可;(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值即可.
解答 解:(1)f′(x)=3ax2+b,
∵函數(shù)f(x)=ax3+bx+12在點x=2處取得極值-4,
∴$\left\{\begin{array}{l}{f(2)=-4}\\{f′(2)=0}\end{array}\right.$即$\left\{\begin{array}{l}{4a+b+8=0}\\{12a+b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=-12}\end{array}\right.$;
(2)由(1)得:f(x)=x3-12x+12,
f′(x)=3x2-12=3(x+2)(x-2),
令f′(x)>0,解得:x>2或x<-2,
令f′(x)<0,解得:-2<x<2,
∴f(x)在[-3,-2)遞增,在(-2,2)遞減,在(2,3]遞增,
∴f(x)min=f(-3)=-21,f(x)max=f(-2)=28.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com