【題目】已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對(duì)任意n∈N*,都有bn+t≤t2,求實(shí)數(shù)t的取值范圍.
【答案】(Ⅰ)見解析. (Ⅱ).
【解析】
(Ⅰ)利用a1+a2+a3+…+an=n﹣an,再寫一式,兩式相減,整理可得數(shù)列{an-1}是等比數(shù)列;(Ⅱ)先確定bn,再利用bn+1﹣bn,確定bn有最大值b3=b4,從而對(duì)任意n∈N*,都有bnt≤t2,等價(jià)于對(duì)任意n∈N*,都有t2t成立,由此可求實(shí)數(shù)t的取值范圍.
(Ⅰ)由題可知:,①
,②
②-①可得.
即:,又.
所以數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列.
(Ⅱ)由(Ⅰ)可得,
∴.
由可得,
由可得.
所以,,
故有最大值.
所以,對(duì)任意,都有,等價(jià)于對(duì)任意,都有成立.
所以,
解得或.
所以,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名大學(xué)生因?yàn)閷W(xué)習(xí)需要,欲各自選購(gòu)一臺(tái)筆記本電腦,他們決定在A,B,C三個(gè)品牌的五款產(chǎn)品中選擇,這五款筆記本電腦在某電商平臺(tái)的價(jià)格與銷量數(shù)據(jù)如表所示:
品牌 | A | B | C | ||
型號(hào) | A﹣1 | A﹣2 | B﹣1 | B﹣2 | C﹣1 |
價(jià)格(元) | 6000 | 7500 | 10000 | 8000 | 4500 |
銷量(臺(tái)) | 1000 | 1000 | 200 | 800 | 3000 |
(Ⅰ)若甲選擇某品牌的筆記本電腦的概率與該品牌的總銷量成正比,求他選擇B品牌的筆記本電腦的概率;
(Ⅱ)若甲、乙兩人選擇每種型號(hào)的筆記本電腦的概率都相等,且兩人選購(gòu)的型號(hào)不相同,求他們兩人購(gòu)買的筆記本電腦的價(jià)格之和大于15000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二理科8班共有50名學(xué)生參加學(xué)業(yè)水平模擬考試,成績(jī)(單位:分,滿分100分)大于或等于90分的為優(yōu)秀,其中語(yǔ)文成績(jī)近似服從正態(tài)分布,數(shù)學(xué)成績(jī)的頻率分布直方圖如圖.
(I)這50名學(xué)生中本次考試語(yǔ)文、數(shù)學(xué)成績(jī)優(yōu)秀的大約各有多少人?
(Ⅱ)如果語(yǔ)文和數(shù)學(xué)兩科成績(jī)都優(yōu)秀的共有4人,從語(yǔ)文優(yōu)秀或數(shù)學(xué)優(yōu)秀的這些同學(xué)中隨機(jī)抽取3人,設(shè)3人中兩科都優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望;
(Ⅲ)根據(jù)(I)(Ⅱ)的數(shù)據(jù),是否有99%以上的把握認(rèn)為語(yǔ)文成績(jī)優(yōu)秀的同學(xué),數(shù)學(xué)成績(jī)也優(yōu)秀?
附:①若~,則,;
②;
③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形是菱形,,,且交于點(diǎn),是上任意一點(diǎn).
(1)求證;
(2)已知二面角的余弦值為,若為的中點(diǎn),求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓與軸交于 兩點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),且直線與直線分別交于 兩點(diǎn).是否存在點(diǎn)使得以 為直徑的圓經(jīng)過點(diǎn)?若存在,求出點(diǎn)的橫坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點(diǎn),是拋物線上不同兩點(diǎn),且(其中是坐標(biāo)原點(diǎn)),直線與交于點(diǎn),線段的中點(diǎn)為.
(Ⅰ)求拋物線的準(zhǔn)線方程;
(Ⅱ)求證:直線與軸平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓上,,分別為橢圓的上、下頂點(diǎn),點(diǎn).
(1)求橢圓的方程;
(2)若直線與橢圓的另一交點(diǎn)分別為,證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線交曲線于,兩點(diǎn),交曲線于,兩點(diǎn),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解高一學(xué)生的心理健康狀況,某校心理健康咨詢中心對(duì)該校高一學(xué)生的睡眠狀況進(jìn)行了抽樣調(diào)查.該中心隨機(jī)抽取了60名高一男生和40名高一女生,統(tǒng)計(jì)了他們?nèi)雽W(xué)第一個(gè)月的平均每天睡眠時(shí)間,得到如下頻數(shù)分布表.規(guī)定:“平均每天睡眠時(shí)間大于等于8小時(shí)”為“睡眠充足”,“平均每天睡眠時(shí)間小于8小時(shí)”為“睡眠不足”.
高一男生平均每天睡眠時(shí)間頻數(shù)分布表
睡眠時(shí)間(小時(shí)) | |||||
頻數(shù) | 3 | 20 | 19 | 10 | 8 |
高一女生平均每天睡眠時(shí)間頻數(shù)分布表
睡眠時(shí)間(小時(shí)) | |||||
頻數(shù) | 20 | 11 | 5 | 2 |
(1)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并根據(jù)已完成的列聯(lián)表,判斷是否有的把握認(rèn)為“睡眠是否充足與性別有關(guān)”?
睡眠充足 | 睡眠不足 | 合計(jì) | |
男生 | 42 | ||
女生 | 7 | ||
合計(jì) | 100 |
(2)由樣本估計(jì)總體的思想,根據(jù)這兩個(gè)頻數(shù)分布表估計(jì)該校全體高一學(xué)生入學(xué)第一個(gè)月的平均每天睡眠時(shí)間(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表);
(3)若再?gòu)倪@100人中平均每天睡眠時(shí)間不足6小時(shí)的同學(xué)里隨機(jī)抽取兩人進(jìn)行心理健康干預(yù),則抽取的兩人中包含女生的概率是多少?
附:參考公式:.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com