【題目】甲、乙兩名大學(xué)生因?yàn)閷W(xué)習(xí)需要,欲各自選購一臺(tái)筆記本電腦,他們決定在A,B,C三個(gè)品牌的五款產(chǎn)品中選擇,這五款筆記本電腦在某電商平臺(tái)的價(jià)格與銷量數(shù)據(jù)如表所示:
品牌 | A | B | C | ||
型號(hào) | A﹣1 | A﹣2 | B﹣1 | B﹣2 | C﹣1 |
價(jià)格(元) | 6000 | 7500 | 10000 | 8000 | 4500 |
銷量(臺(tái)) | 1000 | 1000 | 200 | 800 | 3000 |
(Ⅰ)若甲選擇某品牌的筆記本電腦的概率與該品牌的總銷量成正比,求他選擇B品牌的筆記本電腦的概率;
(Ⅱ)若甲、乙兩人選擇每種型號(hào)的筆記本電腦的概率都相等,且兩人選購的型號(hào)不相同,求他們兩人購買的筆記本電腦的價(jià)格之和大于15000元的概率.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)由銷量比可設(shè)甲選擇B品牌的概率為p,則他選擇A品牌和C品牌的概率分別為2p,3p,再由概率和為1即可得解;
(Ⅱ)利用列舉法,借助于古典概型的計(jì)算公式求解即可.
(Ⅰ)根據(jù)題意,A,B,C三個(gè)品牌的總銷量分別為2000臺(tái),1000臺(tái),3000臺(tái),銷量的比為2:1:3,
設(shè)甲選擇B品牌的概率為p,則他選擇A品牌和C品牌的概率分別為2p,3p,
由p+2p+3p=1,解得p=,
∴甲選擇B品牌的筆記本電腦的概率為.
(Ⅱ)甲、乙兩人從五款筆記本電腦中各任選一臺(tái),價(jià)格有20種情況,分別為:
(6000,7500),(6000,10000),(6000,8000),(6000,4500),(7500,6000),
(7500,10000),(7500,8000),(7500,4500),(10000,6000),(10000,7500),
(10000,8000),(10000,4500),(8000,6000),(8000,7500),(8000,10000),
(8000,4500),(4500,6000),(4500,7500),(4500,10000),(4500,80000).
設(shè)“他們兩人購買的筆記本電腦的價(jià)格之和大于15000元”為事件M,
則事件M包含的情況有8種,分別為:
(6000,10000),(10000,6000),(7500,10000),(10000,7500),
(7500,8000),(8000,7500),(8000,10000),(10000,8000),
∴他們兩人購買的筆記本電腦的價(jià)格之和大于15000元的概率:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代儒家提出的“六藝”指:禮樂射御書數(shù).某校國學(xué)社團(tuán)預(yù)在周六開展“六藝”課程講座活動(dòng),周六這天準(zhǔn)備排課六節(jié),每藝一節(jié),排課有如下要求:“樂”與“書”不能相鄰,“射”和“御”要相鄰,則針對(duì)“六藝”課程講座活動(dòng)的不同排課順序共有( )
A.18種B.36種C.72種D.144種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐中,與都是邊長為2的等邊三角形,是側(cè)棱的中點(diǎn),過點(diǎn)作平行于、的平面分別交棱、、于點(diǎn)、、.
(1)證明:四邊形為矩形;
(2)若平面平面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線 的左、右焦點(diǎn)分別為,過作傾斜角為的直線與軸和雙曲線的右支分別交于兩點(diǎn),若點(diǎn)平分線段,則該雙曲線的離心率是( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的焦距為2,左頂點(diǎn)與上頂點(diǎn)連線的斜率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P(m,0)作圓x2+y2=1的一條切線l交橢圓C于M,N兩點(diǎn),當(dāng)|MN|的值最大時(shí),求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,,為的零點(diǎn):且恒成立,在區(qū)間上有最小值無最大值,則的最大值是( )
A. 11B. 13C. 15D. 17
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱的底面為菱形,底面,,,,分別為,的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)若,求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對(duì)任意n∈N*,都有bn+t≤t2,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com