已知m是兩個正數(shù)2,8的等比中項,則圓錐曲線x+
y2
m
=1的離心率為( 。
A、
3
2
5
2
B、
3
2
C、
5
D、
3
2
5
考點:橢圓的簡單性質(zhì),等比數(shù)列的性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:先根據(jù)等比中項的定義,求出m的值,再分類討論,當(dāng)m=4時,圓錐曲線為橢圓,當(dāng)m=-4時,圓錐曲線為雙曲線,最后根據(jù)離心率的定義求出即可
解答: 解:∵m是兩個正數(shù)2,8的等比中項,
∴m2=2×8=16,
即m=4或m=-4,
當(dāng)m=4時,圓錐曲線x+
y2
4
=1為橢圓,
∴a=2,b=1,c=
3
,
∴e=
c
a
=
3
2
,
當(dāng)m=-4時,圓錐曲線x-
y2
4
=1為雙曲線,
∴a=1,b=2,c=
5
,
∴e=
c
a
=
5
,
故選:D
點評:本題主要考查了等比中項和圓錐曲線的離心率的問題,屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點,左、右焦點分別為F1、F2,若F1與拋物線y2=-4x的焦點重合,過F1的直線l與橢圓相交于A、B兩點.與拋物線相交于C、D兩點,當(dāng)l與x軸垂直時,|CD|=2
2
|AB|.
(1)求橢圓的方程;
(2)若
F2A
F2B
=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角函數(shù)y=tanx的最值( 。
A、最大值為1
B、最小值為-1
C、最小值為0
D、沒有最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)、g(x)滿足f′(x)=g′(x)的導(dǎo)數(shù),則f(x)與g(x)滿足
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+x+4
x
,(x>0)
-
x2-x+4
x
,(x<0)
,
(1)求證:函數(shù)f(x)是偶函數(shù);
(2)判斷函數(shù)f(x)分別在區(qū)間(0,2]、[2,+∞)上的單調(diào)性,并加以證明;
(3)若1≤|x1|≤4,1≤|x2|≤4,求證:|f(x1)-f(x2)|≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線x=1+t2,y=4t-3與x軸交點的直角坐標(biāo)是( 。
A、(1,4)
B、(
25
16
,0)
C、(1,-3)
D、(±
25
16
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)中,過點(1,
π
8
)和點(
2
,
8
)
的直線的傾斜角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+3x2-a(a+2)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過原點,且在原點處的切線斜率是-3,求a,b的值;
(2)若函數(shù)f(x)在區(qū)間(0,2)上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)|3x-4|<x-1;
(2)|3x-4|>2x-1.

查看答案和解析>>

同步練習(xí)冊答案