13.如圖,在三棱柱ABC-A1B1C1中,底面△ABC是邊長為2的等邊三角形,過A1C作平面A1CD平行于BC1,交AB于D點,
(Ⅰ)求證:CD⊥AB
(Ⅱ)若四邊形BCC1B1是正方形,且A1D=5$\sqrt{5}$,求直線A1D與平面CBB1C1所成角的正弦值.

分析 (Ⅰ)連結AC1,設AC1與A1C相交于點E,連接DE,則E為AC1中點,證明D為AB的中點,即可證明:CD⊥AB
(Ⅱ)取B1C1的中點H,連結A1H,證明∠A1FH為直線A1D與平面BCC1B1所成的角,即可得出結論.

解答 (I)證明:連結AC1,設AC1與A1C相交于點E,連接DE,則E為AC1中點,(2分)
∵BC1∥平面A1CD,DE=平面A1CD∩平面ABC1
∴DE∥BC1,(4分)
∴D為AB的中點,
又∵△ABC為正△,∴CD⊥AB-(6分)
( II)解:取B1C1的中點H,連結A1H,則A1H⊥B1C1(7分)
∵四邊形BCC1B1是正方形,且A1D=$\sqrt{5}$,D為AB的中點,
∴AA1⊥AD,AA1⊥A1C,
∴AA1⊥面A1B1C1,故AA1⊥A1H,∴BB1⊥A1H.
∵B1C1∩BB1=B1,∴A1H⊥面BCCB1------(9分)
延長A1D,B1B相交于點F,連結FH,

則∠A1FH為直線A1D與平面BCC1B1所成的角.(10分)
因為D為AB的中點,故A1F=2$\sqrt{5}$,又A1H=$\sqrt{3}$
∴sin∠A1FH=$\frac{\sqrt{15}}{10}$,
即直線A1D與平面BCC1B1所成的角的正弦值為$\frac{\sqrt{15}}{10}$.(12分)

點評 本題考查線線垂直的證明,考查直線A1D與平面BCC1B1所成的角的正弦值,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知x,y取值如表:
x01456
y1.3m3m5.67.4
畫散點圖分析可知,y與x線性相關,且回歸直線方程$\stackrel{∧}{y}$=x+1,則實數(shù)m的值為( 。
A.1.426B.1.514C.1.675D.1.732

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+ax+1,a∈R,g(x)=ex(其中e是自然數(shù)的底數(shù)).
(1)記函數(shù)H(x)=$\frac{f(x)}{g(x)}$,求H(x)的單調區(qū)間;
(2)若對任意的x1,x2∈[0,2],且x1>x2,均有|f(x1)-f(x2)|<|g(x1-g(x2))|成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.冪函數(shù)f(x)=f(x)的圖象過點(2,$\frac{\sqrt{2}}{2}$),則f(x)為(  )
A.y=x${\;}^{\frac{1}{2}}$B.y=$\frac{1}{{x}^{2}}$C.y=x${\;}^{-\frac{1}{2}}$D.y=$\sqrt{2}$x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.下面有5個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π.
②若α為第二象限角,則$\frac{α}{3}$在一、三、四象限;
③在同一坐標系中,函數(shù)y=sin x的圖象和函數(shù)y=x的圖象有3個公共點.
④把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$得到y(tǒng)=3sin2x的圖象.
⑤函數(shù)y=sin(x-$\frac{π}{2}$)在[0,π]上是減函數(shù).
其中,真命題的編號是①④.(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某中學有甲乙兩個文科班進行數(shù)學考試,按照大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計成績后,得到如下列聯(lián)表:
優(yōu)秀非優(yōu)秀合計
20525
101525
合計302050
(1)用分層抽樣的方法在優(yōu)秀的學生中抽6人,其中甲班抽多少人?
(2)計算出統(tǒng)計量k2,能否有95%的把握認為“成績與班級有關”?
下面的臨界值表代參考:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)在△ABC中,已知邊$BC=\sqrt{3},AC=\sqrt{2}$,已知角B=45°,求角A;
若該題中的條件改為邊$BC=\sqrt{3},AC=\sqrt{2}$,已知角A=60°,求角B;請根據(jù)該題的解答歸納判斷解三角形的一個解、兩個解的依據(jù);
(2)A,B,C的對邊分別是a,b,c,已知3acosA=ccosB+bcosC,求A的值;
(3)在△ABC中,內角A,B,C的對邊分別是a,b,c,若a2-b2=$\sqrt{3}$bc,$sinC=2\sqrt{3}sinB$,求角A;
(4)在銳角△ABC,A,B,C的對邊分別是a,b,c,$\frac{a}+\frac{a}=6cosC$,求$\frac{tanC}{tanA}+\frac{tanC}{tanB}的值$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知f′(x)為y=f(x)的導函數(shù),且f′(x0)=a,則$\lim_{△x→0}\frac{{f({x_0}-△x)-f({x_0})}}{△x}$=(  )
A.aB.-aC.±aD.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知三棱錐S-ABC所有頂點都在球O的表面上,且SC⊥平面ABC,若SC=AB=AC=1,∠BAC=120°,則球O的表面積為( 。
A.$\frac{5}{2}$πB.C.D.$\frac{5}{3}$π

查看答案和解析>>

同步練習冊答案