復(fù)數(shù)z=(a2+a)+(a-1)i,a∈R,i為虛數(shù)單位,在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于第三象限,則a的取值范圍是
(-1,0)
(-1,0)
.(答案用區(qū)間表示)
分析:由復(fù)數(shù)z=c+di(c,d∈R)位于第三象限,則
c<0
d<0
,據(jù)此可解出答案.
解答:解:∵復(fù)數(shù)z=(a2+a)+(a-1)i,a∈R,i為虛數(shù)單位,在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于第三象限,
a2+a<0
a-1<0
,解得-1<a<0,
則a的取值范圍是(-1,0).
故答案為(-1,0).
點(diǎn)評(píng):本題考查復(fù)數(shù)的幾何意義,正確理解復(fù)數(shù)的幾何意義是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(a2+a)+(a+2)i(a∈R).
(1)若復(fù)數(shù)z為實(shí)數(shù),求實(shí)數(shù)a的值;
(2)若復(fù)數(shù)z的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=(a2-a)+2ai(a∈R)為純虛數(shù),則a=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:同步題 題型:解答題

設(shè)復(fù)數(shù)z=(a2+a-2)+(a2-7a+6)i,其中a∈R,當(dāng)a為何值時(shí)。
(1)z∈R?
(2)z是純虛數(shù)?
(3)z是零?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省蘇南四校高三(上)12月月考數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)復(fù)數(shù)z=(a2-a)+2ai(a∈R)為純虛數(shù),則a=   

查看答案和解析>>

同步練習(xí)冊(cè)答案