△ABC中,角A,B,C所對的邊分別為a,b,c,若a=,b=2,sinB+cosB=,則角A的大小為   
【答案】分析:由條件由sinB+cosB=得1+2sinBcosB=2,即sin2B=1,根據(jù)三角形的內(nèi)角和定理得到0<B<π得到B的度數(shù).利用正弦定理求出A即可.
解答:解:由sinB+cosB=得1+2sinBcosB=2,即sin2B=1,
因為0<B<π,所以B=45°,b=2,所以在△ABC中,
由正弦定理得:
解得sinA=,又a<b,所以A<B=45°,所以A=30°.
故答案為
點評:本題考查了三角恒等變換、已知三角函數(shù)值求解以及正弦定理,考查了同學們解決三角形問題的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•豐臺區(qū)一模)在△ABC中,角A,B,C所對的邊分別為a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)若f(x)=
1
2
cos2x-
2
3
cosx+
1
2
,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•德州一模)已知函數(shù)f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面積S△ABC=3,求邊長a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•盧灣區(qū)一模)在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•石景山區(qū)一模)在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大。
(Ⅱ)若A=
π4
,a=2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,角A、B、C所對的邊長分別為a、b、c,向量
m
=(1,cosB),
n
=(sinB,-
3
)
,且
m
n

(1)求角B的大;
(2)若△ABC面積為
3
3
2
,3ac=25-b2,求a,c的值.

查看答案和解析>>

同步練習冊答案