【題目】給定函數(shù),若存在實數(shù)對,使得對定義域內(nèi)的所有,恒成立,則稱為“函數(shù)”.
(1)判斷函數(shù),是不是“函數(shù)”;
(2)若是一個“函數(shù)”,求所有滿足條件的有序?qū)崝?shù)對;
(3)若定義域為的函數(shù)為“函數(shù)”,且存在滿足條件的有序?qū)崝?shù)對,當(dāng)時,函數(shù)的值域為,求當(dāng)時, 函數(shù)的值域
【答案】是,理由見解析;;
【解析】
分別假設(shè)函數(shù),是“函數(shù)”,列出方程對任意恒成立即可;
根據(jù)題中的定義,列出方程對任意恒成立,通過整理化簡,令未知數(shù)的系數(shù)和常數(shù)項的對應(yīng)相等求出滿足條件的有序?qū)崝?shù)對即可;
根據(jù)題中的定義,列出兩個恒等式成立,將用替換,兩等式結(jié)合得到函數(shù)值的遞推關(guān)系,用不完全歸納法求出值域.
函數(shù),是“函數(shù)”,理由如下:
對于函數(shù),因為,
所以要使對定義域內(nèi)的所有,恒成立,只需實數(shù)對滿足即可,這樣的實數(shù)對有無數(shù)對,故函數(shù)是“函數(shù)”;
對于函數(shù),因為對任意恒成立,
所以要使對定義域內(nèi)的所有,恒成立,只需實數(shù)對滿足即可, 這樣的實數(shù)對有無數(shù)對,故函數(shù)是“函數(shù)”.
因為是一個“函數(shù)”,
所以對于任意恒成立,
因為,
所以對于任意恒成立,解得,
所以所求的有序?qū)崝?shù)對為.
由題意知, ,
因為,
即有,當(dāng)時,,
因為函數(shù)的值域為,,
所以的值域為,即時,,
因為所以,
所以時,;時,,
依次類推,時,,
所以時,,
即有時,,
又因為,所以時,,
綜上可知, 當(dāng)時, 函數(shù)的值域為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準(zhǔn)保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就是越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% | |
上三個及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機構(gòu)為了 某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責(zé)任強制保險條例》汽車交強險價格的規(guī)定, ,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個位數(shù)字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在《爸爸去哪兒》第二季第四期中,村長給6位“萌娃”布置一項搜尋空投食物的任務(wù).已知:①食物投擲地點有遠(yuǎn)、近兩處;②由于Grace年紀(jì)尚小,所以要么不參與該項任務(wù),但此時另需一位小孩在大本營陪同,要么參與搜尋近處投擲點的食物;③所有參與搜尋任務(wù)的小孩須被均分成兩組,一組去遠(yuǎn)處,一組去近處,那么不同的搜尋方案有______種.(以數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C過點M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.
(1)求圓C的方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點與直角坐標(biāo)系原點重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程為,直線l的參數(shù)方程為為參數(shù).
若,直線l與x軸的交點為M,N是圓C上一動點,求的最小值;
若直線l被圓C截得的弦長等于圓C的半徑,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】歐拉公式(為虛數(shù)單位,,為自然底數(shù))是由瑞士著名數(shù)學(xué)家歐拉發(fā)明的,它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里占有非重要的地位,被譽為“數(shù)學(xué)中的天橋”,根據(jù)歐拉公式可知,表示的復(fù)數(shù)在復(fù)平面中位于( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某種微生物的生長規(guī)律,研究小組在實驗室對該種微生物進(jìn)行培育實驗.前三天觀測的該微生物的群落單位數(shù)量分別為12,16,24.根據(jù)實驗數(shù)據(jù),用y表示第天的群落單位數(shù)量,某研究員提出了兩種函數(shù)模型;①;②,其中a,b,c,p,q,r都是常數(shù).
(1)根據(jù)實驗數(shù)據(jù),分別求出這兩種函數(shù)模型的解析式;
(2)若第4天和第5天觀測的群落單位數(shù)量分別為40和72,請從這兩個函數(shù)模型中選出更合適的一個,并計算從第幾天開始該微生物群落的單位數(shù)量超過1000.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)若關(guān)于的方程有唯一解,且,,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com