【題目】已知極點(diǎn)與直角坐標(biāo)系原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程為,直線l的參數(shù)方程為為參數(shù)

,直線lx軸的交點(diǎn)為M,N是圓C上一動點(diǎn),求的最小值;

若直線l被圓C截得的弦長等于圓C的半徑,求a的值.

【答案】(1);(2)

【解析】

(1)求出圓C的圓心和半徑,M點(diǎn)坐標(biāo),則|MN|的最小值為|MC|-r;(2)由垂徑定理可知圓心到直線l的距離為半徑的倍,列出方程解出.

(1)當(dāng)時,圓的極坐標(biāo)方程為,可化為

化為直角坐標(biāo)方程為,即.

直線的普通方程為,與軸的交點(diǎn)的坐標(biāo)為

因?yàn)閳A心與點(diǎn)的距離為,

所以的最小值為.

(2)由可得

所以圓的普通方程為

因?yàn)橹本被圓截得的弦長等于圓的半徑,

所以由垂徑定理及勾股定理得:圓心到直線的距離為圓半徑的倍,

所以.

解得,又,所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),(其中,,),在上既無最大值,也無最小值,且,則下列結(jié)論成立的是(

A.對任意,則

B.的圖象關(guān)于點(diǎn)中心對稱

C.函數(shù)的單調(diào)減區(qū)間為

D.函數(shù)的圖象相鄰兩條對稱軸之間的距離是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個內(nèi)角,且其對邊分別為,若

(1)求角的值;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個截面,若截面為平行四邊形.

(1)求證:AB∥平面EFGH

(2)AB4CD6,求四邊形EFGH周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,我國施行個人所得稅專項(xiàng)附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項(xiàng)專項(xiàng)附加扣除.某單位老、中、青員工分別有人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取人調(diào)查專項(xiàng)附加扣除的享受情況.

(Ⅰ)應(yīng)從老、中、青員工中分別抽取多少人?

(Ⅱ)抽取的25人中,享受至少兩項(xiàng)專項(xiàng)附加扣除的員工有6人,分別記為.享受情況如右表,其中“”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機(jī)抽取2人接受采訪.

員工

項(xiàng)目

A

B

C

D

E

F

子女教育

×

×

繼續(xù)教育

×

×

×

大病醫(yī)療

×

×

×

×

×

住房貸款利息

×

×

住房租金

×

×

×

×

×

贍養(yǎng)老人

×

×

×

(i)試用所給字母列舉出所有可能的抽取結(jié)果;

(ii)設(shè)為事件“抽取的2人享受的專項(xiàng)附加扣除至少有一項(xiàng)相同”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為(萬元),它們與投入資金(萬元)的關(guān)系有如下公式:,今將200萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對甲、乙兩種產(chǎn)品的投入資金都不低于25萬元.

(Ⅰ)設(shè)對乙種產(chǎn)品投入資金(萬元),求總利潤(萬元)關(guān)于的函數(shù)關(guān)系式及其定義域;

(Ⅱ)如何分配投入資金,才能使總利潤最大,并求出最大總利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{}是公差不為0的等差數(shù)列,其中a1=1,且a2,a3,a6成等比數(shù)列.

(1)求數(shù)列{}的通項(xiàng)公式;

(2)記是數(shù)列{}的前n項(xiàng)和,是否存在n∈N﹡,使得+9n+80<0成立?若存在,求n的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,SA=SB= SC=2,AB=2,設(shè)S、A、B、C四點(diǎn)均在以O為球心的某個球面上。則點(diǎn)O到平面ABC的距離為________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的直角坐標(biāo)方程及曲線上的動點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值;

(Ⅱ)若曲線與曲線相交于兩點(diǎn),且與軸相交于點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊答案