2.若cos($\frac{π}{6}$-α)=$\frac{1}{3}$,則sin($\frac{5π}{6}$-2α)=( 。
A.-$\frac{4\sqrt{2}}{9}$B.$\frac{9}{4}$C.-$\frac{7}{9}$D.$\frac{5}{4}$

分析 根據(jù)誘導(dǎo)公式和二倍角公式計算即可.

解答 解:∵cos($\frac{π}{6}$-α)=$\frac{1}{3}$,
∴sin($\frac{5π}{6}$-2α)=sin($\frac{π}{2}$+$\frac{π}{3}$-2α)=cos($\frac{π}{3}$-2α)
═cos2($\frac{π}{6}$-α)=2cos2($\frac{π}{6}$-α)-1=2×($\frac{1}{3}$)2-1=-$\frac{7}{9}$,
故選:C

點評 本題考查了誘導(dǎo)公式和二倍角公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖為一個求20個數(shù)的平均數(shù)的算法語句,在橫線上應(yīng)填充的是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列命題正確的有①⑤.(填序號)
①若直線與平面有兩個公共點,則直線在平面內(nèi);
②若直線l上有無數(shù)個點不在平面α內(nèi),則l∥α;
③若直線l與平面α相交,則l與平面α內(nèi)的任意直線都是異面直線;
④如果兩條異面直線中的一條與一個平面平行,則另一條直線一定與該平面相交;
⑤若直線l與平面α平行,則l與平面α內(nèi)的直線平行或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法正確的是(  )
A.“a<b”是“am2<bm2”的充要條件
B.命題“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1≤0”
C.“若 a,b都是奇數(shù),則 a+b是偶數(shù)”的逆否命題是“若 a+b不是偶數(shù),則 a,b不都是奇數(shù)”
D.若 p∧q為假命題,則 p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}是等差數(shù)列,其前n項和公式為Sn,a3=6,S3=12
(Ⅰ)求an
(Ⅱ)求數(shù)列{an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下面各組函數(shù)中是同一函數(shù)的是( 。
(1)$y=\sqrt{-2{x^3}}與y=x\sqrt{-2x}$
(2)$y={(\sqrt{x})^2}$與y=|x|
(3)$y=\sqrt{x+1}•\sqrt{x-1}與y=\sqrt{(x+1)(x-1)}$
(4)f(x)=x2-2x-1與g(t)=t2-2t-1.
A.(1)(3)(4)B.(1)(2)(3)C.(3)(4)D.(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知sin(α+π)=-$\frac{1}{3}$,則sin(2α+$\frac{π}{2}$)=$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知焦點在x軸上的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1,其離心率為$\frac{1}{2}$,過橢圓左焦點F1與上頂點B的直線為l0
(1)求橢圓的方程及直線l0的方程;
(2)直線l:y=kx(k≠0)與橢圓C交于M,N兩點,點P是橢圓上異于M,N的一點.
①求證:當(dāng)直線PM,PN存在斜率時,兩直線的斜率之積為定值,即kPM•kPN為定值;
②當(dāng)直線l與點P滿足什么條件時,△PMN有最大面積?并求此最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和為Sn,且滿足4nSn=(n+1)2an(n∈N*).a(chǎn)1=1
(Ⅰ)求an
(Ⅱ)設(shè)bn=$\frac{n}{{a}_{n}}$,數(shù)列{bn}的前n項和為Tn,求證:Tn$<\frac{7}{4}$.

查看答案和解析>>

同步練習(xí)冊答案