15.復數(shù)z=$\frac{2}{1+i}$(i為虛數(shù)單位)的共軛復數(shù)對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接由復數(shù)代數(shù)形式的乘除運算化簡復數(shù)z,求出$\overline{z}$,進一步求出$\overline{z}$對應的點的坐標,則答案可求.

解答 解:由z=$\frac{2}{1+i}$=$\frac{2(1-i)}{(1+i)(1-i)}=1-i$,
得$\overline{z}=1+i$.
則復數(shù)z的共軛復數(shù)對應的點的坐標為:(1,1),位于第一象限.
故選:A.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.某幾何體的正(主)視圖和俯視圖如圖所示,則該幾何體的體積的最大值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知實數(shù)x,y滿足xy-3=x+y,且x>1,則y(x+8)的最小值是( 。
A.33B.26C.25D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在四邊形ABCD中,AB=4,AC=2$\sqrt{3}$,cos∠ACB=$\frac{1}{3}$,∠D=2∠B.
(Ⅰ)求sin∠B;
(Ⅱ)若AB=4AD,求CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點,若在雙曲線的右支上存在一點M,使得($\overrightarrow{OM}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}M}$=0(其中O為坐標原點),且|$\overrightarrow{M{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{M{F}_{2}}$|,則雙曲線離心率為$\sqrt{3}$+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知全集U=R,集合A={x|(x+2)(x-2)≤0},則集合∁RA=( 。
A.(2,+∞)B.[2,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和為Sn,且Sn=$\frac{1}{2}$(3an-1).數(shù)列{bn}為等差數(shù)列,b1=a1,b2=a3
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設cn=$\frac{{4({n^2}+n+1)}}{{b_{n+1}^2-1}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知雙曲線Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點為M,第二象限的點P,Q在雙曲線的某條漸近線上,且$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OQ}$,若△MPQ為等邊三角形,則下列結論正確的有①②(寫出所有正確結論的序號)
①雙曲線的漸近線方程為y=±$\frac{\sqrt{3}}{2}$x;
②雙曲線的離心率為$\frac{\sqrt{7}}{2}$;
③雙曲線的頂點為(±2,0);
④雙曲線的焦點為(±3,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.某校共有學生2000名,各年級男、女生人數(shù)如表中所示.已知在全校學生中隨機抽取1名,抽到二年級女生的概率是0.18.現(xiàn)用分層抽樣的方法在全校抽取64名學生,則應在三年級抽取的學生人數(shù)為(  )
一年級二年級三年級
女生363xy
男生387390z
A.12B.16C.18D.24

查看答案和解析>>

同步練習冊答案