已知F1,F(xiàn)2是橢圓
x2
25
+
y2
16
=1
的左右焦點,且有定點A(2,2),又點M是橢圓上一動點,|MA|+
5
3
|MF2|
的最小值是
19
3
19
3
分析:先作出圖形來,再根據(jù)橢圓的第二定義找到取得最值的狀態(tài)求解.
解答:解:根據(jù)橢圓方程得e=
3
5

|MA|+
5
3
|MF2|
=|MA|+
1
e
|MF2|,
根據(jù)橢圓的第二定義:
過A作右準線的垂線,交與B點,
右準線方程為x=
25
3

則|MA|+
1
e
|MF2|=|MA|+|MB|≥|AB|
∵|AB|=
25
3
-2=
19
3

故答案是
19
3

點評:本題考查了橢圓的第二定義,體現(xiàn)了數(shù)形結合思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,若在橢圓上存在一點P,使∠F1PF2=120°,則橢圓離心率的范圍是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的兩個焦點,若橢圓上存在點P使得∠F1PF2=120°,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是橢圓的兩個焦點.△F1AB為等邊三角形,A,B是橢圓上兩點且AB過F2,則橢圓離心率是
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知 F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點,橢圓上存在一點P,使得SF1PF2=
3
b2
,則該橢圓的離心率的取值范圍是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
2
+y2=1
的兩個焦點,點P是橢圓上一個動點,那么|
PF1
+
PF2
|
的最小值是( 。

查看答案和解析>>

同步練習冊答案