11.設全集U=Z,集合A={x|1≤x<7,x∈Z},B={x=2k-1,k∈Z},則A∩(∁UB)=( 。
A.{1,2,3,4,5,6}B.{1,3,5}C.{2,4,6}D.

分析 根據(jù)求出B的補集,找出A與B補集的交集即可.

解答 解:全集U=Z,集合A={x|1≤x<7,x∈Z}={1,2,3,4,5,6}
B={x=2k-1,k∈Z},
∴∁uB={x=2k,k∈Z},
∴A∩(∁uB)={2,4,6},
故選:C.

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.如圖,A1,A2為橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的長軸的左、右端點,O為坐標原點,S,Q,T為橢圓上不同于A1,A2的三點,直線QA1,QA2,OS,OT圍成一個平行四邊形OPQR,則|OS|2+|OT|2=14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.參加成都七中數(shù)學選修課的同學,對某公司的一種產(chǎn)品銷量與價格進行了統(tǒng)計,得到如下數(shù)據(jù)和散點圖:

定價x(元/kg)102030405060
年銷量y(kg)115064342426216586
z=2lny14.112.912.111.110.28.9
(參考數(shù)據(jù):$\sum_{i=1}^6{({x_i}-\overline x)}•({y_i}-\overline y)=-34580$,$\sum_{i=1}^6{({x_i}-\overline x)}•({z_i}-\overline z)=-175.5$$\sum_{i=1}^6{{{({y_i}-\overline y)}^2}}=776840$,$\sum_{i=1}^6{({y_i}-\overline y)}•({z_i}-\overline z)=3465.2$)
(1)根據(jù)散點圖判斷,y與x,z與x哪一對具有較強的線性相關性(給出判斷即可,不必說明理由)?
(2)根據(jù)(1)的判斷結果及數(shù)據(jù),建立y關于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
(3)定價為多少元/kg時,年利潤的預報值最大?
附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線$\widehat{y}$=$\widehat$•x+$\widehat{a}$的斜率和截距的最小二乘估計分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n•\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-n•$\widehat$•$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.所給命題:
①菱形的兩條對角線互相平分的逆命題;
②{x|x2+1=0,x∈R}=∅或{0}=∅;
③對于命題:“p且q”,若p假q真,則“p且q”為假;
④有兩條邊相等且有一個內(nèi)角為60°是一個三角形為等邊三角形的充要條件.
其中為真命題的序號為③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)y=f(x)是R上的奇函數(shù),且在區(qū)間(0,+∞)單調(diào)遞增,若f(-2)=0,則不等式xf(x)<0的解集是(-2,0)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設f(x)=5|x|-$\frac{1}{1+{x}^{2}}$,則使得f(2x+1)>f(x)成立的x取值范圍是( 。
A.(-1,-$\frac{1}{3}$)B.(-3,-1)C.(-1,+∞)D.(-∞,-1)∪(-$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=b+logax(x>0且a≠1)的圖象經(jīng)過點(8,2)和(1,-1).
(1)求f(x)的解析式;
(2)[f(x)]2=3f(x),求實數(shù)x的值;
(3)令y=g(x)=2f(x+1)-f(x),求y=g(x)的最小值及其最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若關于x的不等式$\frac{x-a}{x-b}>0$(a,b∈R)的解集為(-∞,1)∪(4,+∞),則a+b=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設集合A={x|-1≤x≤2},B={x|m-1≤x≤2m+1},已知B⊆A.
(1)當x∈N時,求集合A的子集的個數(shù);
(2)求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案