【題目】如圖所示,在正方體中, 是棱的中點(diǎn).

)求直線和平面所成角的正弦值.

)在棱上是否存在一點(diǎn),使平面?證明你的結(jié)論.

【答案】(1);(2)見解析.

【解析】試題分析:1)先取AA1的中點(diǎn)M,連接EM,BM,根據(jù)中位線定理可知EMAD,而AD⊥平面ABB1A1,則EM⊥面ABB1A1,從而BM為直線BE在平面ABB1A1上的射影,則∠EBM直線BE與平面ABB1A1所成的角,設(shè)正方體的棱長為2,則EM=AD=2,BE=3,于是在RtBEM中,求出此角的正弦值即可.
2)在棱C1D1上存在點(diǎn)F,使B1F平面A1BE,分別取C1D1CD的中點(diǎn)F,G,連接EG,BG,CD1,F(xiàn)G,因A1D1B1C1BC,且A1D1=BC,所以四邊形A1BCD1為平行四邊形,根據(jù)中位線定理可知EGA1B,從而說明A1,B,G,E共面,則BGA1BE,根據(jù)FGC1CB1G,且FG=C1C=B1B,從而得到四邊形B1BGF為平行四邊形,則B1FBG,而B1F平面A1BE,BG平面A1BE,根據(jù)線面平行的判定定理可知B1F∥平面A1BE.

試題解析:

)如圖(a),取的中點(diǎn),連接, ,因?yàn)?/span>的中點(diǎn),四邊形為正方形,所以,

又在正方體中, 平面,所以,從而為直線在平面上的射影,

直線與平面所成的角.設(shè)正方體的棱長為,則, ,

于是在中, ,

即:直線與平面所成的角的正弦值為

)在棱上存在點(diǎn),使平面,

事實(shí)上,如圖(b)所示,分別取的中點(diǎn)、,連接、、、,

,且,所以四邊形為平行四邊形,

因此,又, 分別為, 的中點(diǎn),所以,從而,這說明 , 共面,

所以平面

因四邊形,皆為正方形, 分別為的中點(diǎn),

所以,且

因此四邊形為平行四邊形,所以,而平面, 平面,

平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)銳角△ABC的三內(nèi)角A、B、C所對邊的邊長分別為a、b、c,且 a=1,B=2A,則b的取值范圍為(
A.( ,
B.(1,
C.( ,2)
D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次猜獎(jiǎng)游戲中,1,2,3,4四扇門里擺放了, , 四件獎(jiǎng)品(每扇門里僅放一件).甲同學(xué)說:1號門里是,3號門里是;乙同學(xué)說:2號門里是,3號門里是;丙同學(xué)說:4號門里是,2號門里是;丁同學(xué)說:4號門里是,3號門里是.如果他們每人都猜對了一半,那么4號門里是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高三年級從甲、乙兩個(gè)班級各選出7名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學(xué)生的平均分是85,乙班學(xué)生成績的中位數(shù)是83,則x+y的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時(shí),需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時(shí),連續(xù)劇播放時(shí)長、廣告播放時(shí)長、收視人次如下表所示:

連續(xù)劇播放時(shí)長(分鐘)

廣告播放時(shí)長分鐘

收視人次

70

5

60

60

5

25

已知電視臺每周安排的甲、乙連續(xù)劇的總播放時(shí)間不多于600分鐘,廣告的總播放時(shí)間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用表示每周計(jì)劃播出的甲、乙兩套連續(xù)劇的次數(shù)

(1),列出滿足題目條件的數(shù)學(xué)關(guān)系式并畫出相應(yīng)的平面區(qū)域;

2問電視臺每周播出甲乙兩套連續(xù)劇各多少次,才能使收視人次最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有兩個(gè)分類變量xy,其一組觀測值如下面的2×2列聯(lián)表所示:

y1

y2

x1

a

20a

x2

15a

30a

其中a,15a均為大于5的整數(shù),則a取何值時(shí),在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為xy之間有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)三個(gè)向量: =(3,2), =(﹣1,2), =(4,1)
(1)若( +k )∥(2 ),求實(shí)數(shù)k的值;
(2)設(shè) =(x,y),且滿足( + )⊥( ),| |= ,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:不等式(m1)x2(m1)x2>0的解集是R,命題qsin xcos x>m.如果對于任意的xR,命題p是真命題且命題q為假命題,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2013·湖北高考)四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量x,y之間的相關(guān)關(guān)系,并求得回歸直線方程,分別得到以下四個(gè)結(jié)論:

yx負(fù)相關(guān)且=2.347x-6.423;

yx負(fù)相關(guān)且=-3.476x+5.648;

yx正相關(guān)且=5.437x+8.493;

yx正相關(guān)且=-4.326x-4.578.

其中一定不正確的結(jié)論的序號是( )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

同步練習(xí)冊答案