【題目】已知橢圓: 的短軸長為2,且函數(shù)的圖象與橢圓僅有兩個公共點,過原點的直線與橢圓交于兩點.
(1)求橢圓的標準方程;
(2)點為線段的中垂線與橢圓的一個公共點,求面積的最小值,并求此時直線的方程.
【答案】(1);(2)的面積的最小值為,此時直線的方程為.
【解析】【試題分析】(1)依據(jù)題設條件建立方程求解;(2)先建立直線的方程,再與橢圓方程聯(lián)立,運用坐標建立關(guān)于三角形面積公式的目標函數(shù)求解:
(1)由題意可知, ,則,
聯(lián)立與,得:
根據(jù)橢圓與拋物線的對稱性,可得
∴,又,
∴,∴橢圓的標準方程為.
(2)①當直線的斜率不存在時, ;當直線的斜率為0時, ,
②當直線的斜率存在且不為0時,設直線的方程為,由,得,
∴,
由題意可知線段的中垂線方程為,由,得,
∴,
∴
即,當且僅當,即時等號成立,此時的面積取得最小值,
∵,∴的面積的最小值為,此時直線的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】在長方體中,,是棱上的一點.
(1)求證:平面;
(2)求證:;
(3)若是棱的中點,在棱上是否存在點,使得平面?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:極坐標與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)經(jīng)過點(平面直角坐標系中點)作直線交曲線于, 兩點,若恰好為線段的三等分點,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個關(guān)于數(shù)列命題:
(1)若是等差數(shù)列,則三點、、共線;
(2)若是等比數(shù)列,則、、 ()也是等比數(shù)列;
(3)等比數(shù)列的前n項和為,若對任意的,點均在函數(shù) (, 均為常數(shù))的圖象上,則r的值為.
(4)對于數(shù)列,定義數(shù)列為數(shù)列的“差數(shù)列”,若, 的“差數(shù)列”的通項為,則數(shù)列的前項和
其中正確命題的個數(shù)是 ( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《中國好聲音()》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012年7月13日在浙江衛(wèi)視播出.每期節(jié)目有四位導師參加.導師背對歌手,當每位參賽選手演唱完之前有導師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導師的團隊中接受指導訓練.已知某期《中國好聲音》中,6位選手唱完后,四位導師為其轉(zhuǎn)身的情況如下表所示:
導師轉(zhuǎn)身人數(shù)(人) | 4 | 3 | 2 | 1 |
獲得相應導師轉(zhuǎn)身的選手人數(shù)(人) | 1 | 2 | 2 | 1 |
現(xiàn)從這6位選手中隨機抽取兩人考查他們演唱完后導師的轉(zhuǎn)身情況.
(1)請列出所有的基本事件;
(2)求兩人中恰好其中一位為其轉(zhuǎn)身的導師不少于3人,而另一人為其轉(zhuǎn)身的導師不多于2人的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù).
(1)求證:曲線在點處的切線過定點;
(2)若是在區(qū)間上的極大值,但不是最大值,求實數(shù)的取值范圍;
(3)求證:對任意給定的正數(shù) ,總存在,使得在上為單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】漳州市博物館為了保護一件珍貴文物,需要在館內(nèi)一種透明又密封的長方體玻璃保護罩內(nèi)充入保護液體.該博物館需要支付的總費用由兩部分組成:①罩內(nèi)該種液體的體積比保護罩的容積少0.5立方米,且每立方米液體費用500元;②需支付一定的保險費用,且支付的保險費用與保護罩容積成反比,當容積為2立方米時,支付的保險費用為4000元.
(Ⅰ)求該博物館支付總費用與保護罩容積之間的函數(shù)關(guān)系式;
(Ⅱ)求該博物館支付總費用的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com