A. | 在區(qū)間( $\frac{1}{e}$,1),(1,e)內(nèi)均有零點(diǎn) | |
B. | 在區(qū)間( $\frac{1}{e}$,1),(1,e)內(nèi)均無(wú)零點(diǎn) | |
C. | 在區(qū)間( $\frac{1}{e}$,1)內(nèi)有零點(diǎn),在區(qū)間(1,e)內(nèi)無(wú)零點(diǎn) | |
D. | 在區(qū)間( $\frac{1}{e}$,1),內(nèi)無(wú)零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn) |
分析 先對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),再根據(jù)導(dǎo)函數(shù)的正負(fù)情況判斷原函數(shù)的增減性可得答案.
解答 解:由題得f′(x)=$\frac{x-3}{3x}$,令f′(x)>0得x>3;
令f′(x)<0得0<x<3;f′(x)=0得x=3,
故知函數(shù)f(x)在區(qū)間(0,3)上為減函數(shù),在區(qū)間(3,+∞)為增函數(shù),
在點(diǎn)x=3處有極小值1-ln3<0;
又f(1)=$\frac{1}{3}$>0,f(e)=$\frac{e}{3}$-1<0,f($\frac{1}{e}$)=$\frac{1}{3e}$+1>0,
故選:D.
點(diǎn)評(píng) 本題主要考查導(dǎo)函數(shù)的增減性與原函數(shù)的單調(diào)性之間的關(guān)系.即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {y|y≥-1} | B. | ∅ | C. | {(0,0)} | D. | {0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,1] | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0]∪[3,+∞) | B. | (-∞,1)∪[3,+∞) | C. | (-∞,1) | D. | (-∞,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | -6 | C. | ±6 | D. | ±5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com