2.已知f(x)=$\left\{\begin{array}{l}{2^x}-1\;,\;x≤0\\{log_2}(x+1)\;,\;x>0\end{array}$若f(x)=-$\frac{3}{4}$,則x的值是-2.

分析 利用分段函數(shù)以及方程,直接求解x的值即可.

解答 解:f(x)=$\left\{\begin{array}{l}{2^x}-1\;,\;x≤0\\{log_2}(x+1)\;,\;x>0\end{array}$,
當(dāng)x≤0時(shí),f(x)=-$\frac{3}{4}$=2x-1,解得x=-2,
當(dāng)x>0時(shí),f(x)=-$\frac{3}{4}$=log2(x+1),
解得x=${2}^{-\frac{3}{4}}-1<0$舍去.
故答案為:-2.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn),分段函數(shù)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.探求凸多面體的面F、頂點(diǎn)數(shù)V和棱數(shù)E之間的關(guān)系得到的結(jié)論是( 。
A.無確定關(guān)系B.F+E-V=2C.E+V-F=2D.F+V-E=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.觀察下列等式:
$\frac{1}{1×2}=1-\frac{1}{2}$,$\frac{1}{2×3}=\frac{1}{2}-\frac{1}{3}$,$\frac{1}{3×4}=\frac{1}{3}-\frac{1}{4}$,…
計(jì)算:
$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+\frac{1}{4×5}+\frac{1}{5×6}$=$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)=ln(1+3x+9xa),對(duì)于任意的a∈R,若當(dāng)x∈(-∞,0]時(shí),f(x)恒有意義,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,2)B.(-∞,2]C.[-2,+∞)D.(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知:函數(shù)f(x)=|1-3x|+3+ax.
(1)若a=-1,解不等式f(x)≤5;
(2)若函數(shù)f(x)有最小值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在某個(gè)旅游城市里,每年各個(gè)月份隨著游客數(shù)量的變化,從事旅游服務(wù)工作的人數(shù)也會(huì)發(fā)生相應(yīng)的變化.由政府部門的統(tǒng)計(jì)數(shù)據(jù)可知,該城市每月從事旅游服務(wù)工作的人數(shù)f(n)(單位:千人)可近似地用函數(shù)f(n)=Acos(ωn+φ)+k表示,其中n(n∈[1,12],n∈N*)表示月份(如n=1表示1月份),且A>0,ω≠0.經(jīng)測(cè)算,在過去的一年中,f(n)=$\frac{3}{2}$cos[$\frac{π}{6}$(n+2)]+$\frac{28}{5}$.
(1)在過去的一年中,該城市哪個(gè)月份從事旅游服務(wù)的人數(shù)最少?最少時(shí)有多少人?
(2)在過去的一年中,該城市從幾月份到幾月份從事旅游服務(wù)工作的人數(shù)持續(xù)增加?
(3)假設(shè)今年該城市的某個(gè)旅游景點(diǎn)因環(huán)境破壞嚴(yán)重而被迫關(guān)閉,那么在此期間,對(duì)于函數(shù)f(n)=Acos(ωn+φ)+k(A>0,ω≠0)中的A,ω,φ,k四個(gè)量,哪個(gè)(或哪些)量的值最有可能減小,(忽略其他因素的影響)?試說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在三棱錐P-ABC中,PA⊥面ABC,∠BAC=120°,且AB=AC=AP=1,M為PB的中點(diǎn),N在BC上,且BN=$\frac{1}{3}$BC.
(1)求證:MN⊥AB;
(2)求平面MAN與平面PAN所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=ex+x-4的零點(diǎn)所在的區(qū)間為(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD∥BC,
AD⊥側(cè)面PAB,△PAB是等邊三角形,DA=AB=2,BC=$\frac{1}{2}$AD,E是線段AB中點(diǎn).
(1)求證:PE⊥CD;
(2)求三棱錐P-CDE的表面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案